cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328954 Numbers m that are neither arithmetic (A003601) nor antiharmonic (A020487).

Original entry on oeis.org

2, 8, 10, 12, 18, 24, 26, 28, 32, 34, 40, 48, 52, 58, 63, 72, 74, 75, 76, 80, 82, 84, 88, 90, 98, 104, 106, 108, 112, 120, 122, 124, 128, 130, 136, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175, 176, 178, 192, 194, 202, 208, 216, 218, 226, 228, 232, 234
Offset: 1

Views

Author

Jaroslav Krizek, Dec 03 2019

Keywords

Comments

Numbers m such that neither the arithmetic mean of the divisors of m nor the antiharmonic mean of the divisors of m is an integer.
Numbers m such that neither A(m) = A000203(m)/A000005(m) nor B(m) = A001157(m)/A000203(m) is an integer.
Corresponding values of A(m): 3/2, 15/4, 9/2, 14/3, 13/2, 15/2, 21/2, 28/3, 21/2, 27/2, 45/4, 62/5, ...
Corresponding values of B(m): 5/3, 17/3, 65/9, 15/2, 35/3, 85/6, 425/21, 75/4, 65/3, 725/27, 221/9, ...

Crossrefs

Programs

  • Magma
    [m: m in [1..10^5] | not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and not IsIntegral(&+[d^2: d in Divisors(m)] / SumOfDivisors(m))]
  • Mathematica
    Select[Range[235], !Divisible[DivisorSigma[2, #], (s = DivisorSigma[1, #])] && !Divisible[s, DivisorSigma[0, #]] &] (* Amiram Eldar, Dec 06 2019 *)