A328963 Smallest k such that n = sigma_0(k) - ((bigomega(k)-1)*omega(k)), where sigma_0 = A000005, omega = A001221, bigomega = A001222.
1, 2, 36, 72, 144, 180, 576, 420, 360, 864, 1296, 720, 36864, 1080, 1440, 1260, 5184, 1800, 2160, 3360, 5760, 15552, 4620, 2520, 150994944, 6480, 5400, 13440, 8640, 6300, 9663676416, 5040, 12960, 9240, 331776, 7560, 186624, 248832, 34560, 10080, 1327104, 13860
Offset: 1
Keywords
Examples
The sequence of terms together with their prime signatures begins: 1: () 2: (1) 36: (2,2) 72: (3,2) 144: (4,2) 180: (2,2,1) 576: (6,2) 420: (2,1,1,1) 360: (3,2,1) 864: (5,3) 1296: (4,4) 720: (4,2,1) 36864: (12,2) 1080: (3,3,1) 1440: (5,2,1) 1260: (2,2,1,1) 5184: (6,4) 1800: (3,2,2) 2160: (4,3,1) 3360: (5,1,1,1) 5760: (7,2,1) 15552: (6,5) 4620: (2,1,1,1,1) 2520: (3,2,1,1) 150994944: (24,2)
Crossrefs
Programs
-
Mathematica
dat=Table[DivisorSigma[0,n]-(PrimeOmega[n]-1)*PrimeNu[n],{n,1000}]; Table[Position[dat,i][[1,1]],{i,First[Split[Union[dat],#2==#1+1&]]}]
-
PARI
search_up_to = 2^28; A307408(n) = 2+((bigomega(n)-1)*omega(n)); A328959(n) = (numdiv(n) - A307408(n)); A328963(search_up_to) = { my(m=Map(),t,lista=List([])); for(n=1,search_up_to,t = A328959(n); if(!mapisdefined(m,t+2), mapput(m,t+2,n))); for(u=1,oo,if(!mapisdefined(m,u,&t),return(Vec(lista)), listput(lista,t))); }; v328963 = A328963(search_up_to); A328963(n) = v328963[n]; \\ Antti Karttunen, Nov 17 2019
Extensions
Definition corrected and terms a(25) - a(30) added by Antti Karttunen, Nov 17 2019
a(31)-a(42) from Giovanni Resta, Nov 18 2019
Comments