A328995 Dirichlet g.f. = Product_{primes p == 1 mod 3} (1+p^(-s))/(1-p^(-s)).
1, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 4, 2, 2, 2, 0, 0, 2, 4, 2, 0, 2, 2, 2, 2, 0, 2, 0, 2, 2, 0, 2, 4, 2, 2, 0, 2, 4, 0, 4, 0, 2, 2, 2, 0, 0, 4, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 0, 2, 4, 2, 0, 2, 4, 2, 2, 0, 0, 2, 2, 4, 0, 4, 2, 0, 2, 0
Offset: 0
Keywords
References
- Baake, Michael, and Peter AB Pleasants. "Algebraic solution of the coincidence problem in two and three dimensions." Zeitschrift für Naturforschung A 50.8 (1995): 711-717. See p. 713.
- Baake, M. and P. A. B. Pleasants. "The coincidence problem for crystals and quasicrystals." Aperiodic, vol. 94, pp. 25-29. 1995.
Links
- Baake, Michael, and Peter AB Pleasants, Algebraic solution of the coincidence problem in two and three dimensions, Zeitschrift für Naturforschung A 50.8 (1995): 711-717. [Annotated scan of page 713 only].
Crossrefs
Cf. A031358.
Programs
-
PARI
t1=direuler(p=2,2400,(1+(p%3<2)*X)) t2=direuler(p=2,2400,1/(1-(p%3<2)*X)) t3=dirmul(t1,t2) t4=vector(200,n,t3[6*n+1]) \\ (and then prepend 1)