cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328995 Dirichlet g.f. = Product_{primes p == 1 mod 3} (1+p^(-s))/(1-p^(-s)).

Original entry on oeis.org

1, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 4, 2, 2, 2, 0, 0, 2, 4, 2, 0, 2, 2, 2, 2, 0, 2, 0, 2, 2, 0, 2, 4, 2, 2, 0, 2, 4, 0, 4, 0, 2, 2, 2, 0, 0, 4, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 0, 2, 4, 2, 0, 2, 4, 2, 2, 0, 0, 2, 2, 4, 0, 4, 2, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2019

Keywords

References

  • Baake, Michael, and Peter AB Pleasants. "Algebraic solution of the coincidence problem in two and three dimensions." Zeitschrift für Naturforschung A 50.8 (1995): 711-717. See p. 713.
  • Baake, M. and P. A. B. Pleasants. "The coincidence problem for crystals and quasicrystals." Aperiodic, vol. 94, pp. 25-29. 1995.

Crossrefs

Cf. A031358.

Programs

  • PARI
    t1=direuler(p=2,2400,(1+(p%3<2)*X))
    t2=direuler(p=2,2400,1/(1-(p%3<2)*X))
    t3=dirmul(t1,t2)
    t4=vector(200,n,t3[6*n+1]) \\ (and then prepend 1)