A329001 Numerator of the rational constant term c(n) of the n-th moment mu(n) of the limiting distribution of the number of comparisons in quicksort (for n >= 0).
1, 0, 7, -19, 2260, -229621, 74250517, -30532750703, 90558126238639, -37973078754146051, 21284764359226368337, -1770024989560214080011109, 539780360793818428471498394131, -194520883210026428577888559667954807, 911287963487139630688627952818633149408727
Offset: 0
Examples
The first few c(n) are {1, 0, 7, -19, 2260/9, -229621/108, 74250517/2700, -30532750703/81000, 90558126238639/14883750, -37973078754146051/347287500, ...}.
References
- Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991).
Links
- Petros Hadjicostas, Table of n, a(n) for n = 0..25
- S. B. Ekhad and D. Zeilberger, A detailed analysis of quicksort running time, arXiv:1903.03708 [math.PR], 2019. [They have the first eight moments for the number of comparisons in quicksort from which the first eight asymptotic moments mu(n) can be derived.]
- James A. Fill and Svante Janson, Smoothness and decay properties of the limiting Quicksort density function, In: D. Gardy and A. Mokkadem (eds), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 53-64.
- James A. Fill and Svante Janson, Quicksort asymptotics, Journal of Algorithms, 44(1) (2002), 4-28.
- Steven Finch, Recursive PGFs for BSTs and DSTs, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives a Mathematica program to generate the constants c(n).]
- P. Hennequin, Combinatorial analysis of the quicksort algorithm, Informatique théoretique et applications, 23(3) (1989), 317-333. [He derives some of the asymptotic moments mu(n) whose constant terms are the c(n)'s.]
- M. E. Hoffman and M. Kuba, Logarithmic integrals, zeta values, and tiered binomial coefficients, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They give a formula for the constants c(n).]
- Mireille Régnier, A limiting distribution for quicksort, Informatique théorique et applications, 23(3) (1989), 335-343.
- Uwe Rösler, A limit theorem for quicksort, Informatique théorique et applications, 25(1) (1991), 85-100. [In Section 5, he gives a recursion for the moments mu(n), which potentially can be used to find the constants c(n), but he does not do any explicit calculations.]
- Kok Hooi Tan and Petros Hadjicostas, Density and generating functions of a limiting distribution in quicksort, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see pp. 9-11.
- Kok Hooi Tan and Petros Hadjicostas, Some properties of a limiting distribution in Quicksort, Statistics and Probability Letters, 25(1) (1995), 87-94.
- Vytas Zacharovas, On the exponential decay of the characteristic function of the quicksort distribution, arXiv:1605.04018 [math.CO], 2016.
Crossrefs
Programs
-
Maple
# The function A is defined in A330852. # Produces the constants c(n): c := proc(p) local v, a: option remember: if p = 0 then v := 1; end if: if p = 1 then v := 0: end if: if 2 <= p then v := (p - 1)!*add((-2)^(a + 1)*A(a + 1)*c(p - 1 - a)/(a!*(p - 1 - a)!), a = 0 .. p - 1): end if: v: end proc: # Produces the numerators of c(n): seq(numer(c(n)), n=0..15);
-
Mathematica
(* The function A is defined in A330852. *) c[p_] := c[p] = Module[{v, a}, If[p == 0, v = 1;]; If[p == 1, v = 0]; If[2 <= p, v = (p - 1)!*Sum[(-2)^(a + 1)*A[a + 1]*c[p - 1 - a]/(a!*(p - 1 - a)!), {a, 0, p - 1}]]; v]; Table[Numerator[c[n]], {n, 0, 15}] (* Jean-François Alcover, Mar 28 2021, after Maple code *)
Comments