cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329002 a(n) is the smallest d such that the sum of digits of 2^d + n is equal to d, or -1 if no such d exists.

Original entry on oeis.org

5, 9, 103, 10, 3, 7, 4, 2, 1, 5, 9, 12, 10, 3, 7, 4, 2, 18, 5, 9, 12, 10, 3, 7, 4, 20, 18, 70, 9, 12, 10
Offset: 0

Views

Author

N. J. A. Sloane, Nov 16 2019

Keywords

Comments

The first open case is 31. If a(31) is not -1, then it is at least 20000.
If a(i) = m > 0 then A328882 takes the value i for the first time at term 2^m+i. For example, the first appearance of 2 in A328882 is at term 2^103 + 2.
From Yusuf Gurtas, Dec 27 2019: (Start)
a(n)=1 if and only if n+2 is a positive integer whose sum of digits is 1. Since the only such numbers are 10^k the only solutions to a(n)=1 are n=10^k-2 for k=1,2,... In other words, a(n)=1 if and only if n = 8, 98, 998, 9998, 99998, 999998, .... In particular, a(n)=1 has infinitely many solutions.
Using the same idea, a(n)=2 can be solved. a(n)=2 if and only if n + 2^2 = n + 4 is a positive integer whose sum of digits is 2. Since the only such numbers are 2*10^k or 10^j*(10^k+1) for j=0,1,2,..., k=1,2,3,..., the only solutions to a(n)=2 are n = 10^j*(10^k+1) - 4 for j=0,1,2,..., k=1,2,3,.... The first 30 solutions are n = 7, 16, 97, 106, 196, 997, 1006, 1096, 1996, 9997, 10006, 10096, 10996, 19996, 99997, 100006, 100096, 100996, 109996, 199996, 999997, 1000006, 1000096, 1000996, 1009996, 1099996, 1999996, 9999997, 10000006, 10000096.
(End)

Examples

			n=1: 2^9 + 1 = 513 has digit sum 9, so a(1) = 9.
n=2: 2^103 + 2 has digit sum 103, and no smaller number has this property, so a(2) = 103.
		

Crossrefs

Programs

  • Mathematica
    Array[Block[{d = 1}, While[Total@ IntegerDigits[2^d + #] != d, d++]; d] &, 31, 0] (* Michael De Vlieger, Dec 29 2019 *)
  • PARI
    a(n) = my(d=1); while (sumdigits(2^d+n) != d, d++); d; \\ Michel Marcus, Nov 12 2023