A329005 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.
1, 1, 1, 5, 11, 7, 43, 85, 19, 341, 683, 455, 2731, 5461, 3641, 21845, 43691, 9709, 174763, 349525, 233017, 1398101, 2796203, 1864135, 11184811, 22369621, 1657009, 89478485, 178956971, 119304647, 715827883, 1431655765, 954437177, 5726623061, 11453246123
Offset: 1
Keywords
Examples
See Example in A327320.
Programs
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327320 *) Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329005 *) Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329006 *) Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329007 *) (* Peter J. C. Moses, Nov 01 2019 *)
Comments