cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A329005 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.

Original entry on oeis.org

1, 1, 1, 5, 11, 7, 43, 85, 19, 341, 683, 455, 2731, 5461, 3641, 21845, 43691, 9709, 174763, 349525, 233017, 1398101, 2796203, 1864135, 11184811, 22369621, 1657009, 89478485, 178956971, 119304647, 715827883, 1431655765, 954437177, 5726623061, 11453246123
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327320.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327320 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329005 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329006 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329007 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A329006 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.

Original entry on oeis.org

1, 5, 7, 85, 341, 455, 5461, 21845, 9709, 349525, 1398101, 1864135, 22369621, 89478485, 119304647, 1431655765, 5726623061, 2545165805, 91625968981, 366503875925, 488671834567, 5864062014805, 23456248059221, 31274997412295, 375299968947541, 15011998757901653
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327320.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327320 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329005 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329006 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329007 *)
    (* Peter J. C. Moses, Nov 01 2019 *)
Showing 1-2 of 2 results.