A329007 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.
1, 9, 21, 405, 2511, 5103, 92583, 557685, 372519, 20135709, 120873303, 241805655, 4353033231, 26119793709, 52241181741, 940355620245, 5642176768191, 3761465527701, 203119525916343, 1218718317759525, 2437437797780517, 43873890820402509, 263243376303474663
Offset: 1
Keywords
Examples
See Example in A327320.
Programs
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327320 *) Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329005 *) Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329006 *) Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329007 *) (* Peter J. C. Moses, Nov 01 2019 *)
Comments