A329008 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321.
1, 1, 7, 5, 61, 91, 547, 205, 4921, 7381, 44287, 33215, 398581, 597871, 3587227, 672605, 32285041, 48427561, 290565367, 217924025, 2615088301, 3922632451, 23535794707, 8825923015, 211822152361, 317733228541, 1906399371247, 1429799528435, 17157594341221
Offset: 1
Keywords
Examples
See Example in A327321.
Programs
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327321 *) Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329008 *) Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329009 *) Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329010 *) (* Peter J. C. Moses, Nov 01 2019 *) Numerator[CoefficientList[Normal[Series[1/((4 + x)*(4 - 3*x)), {x, 0, 30}]], x]] (* Vaclav Kotesovec, Mar 19 2022 *)
Formula
a(2*n - 1) = A015518(2*n - 1). - Vaclav Kotesovec, Mar 19 2022
Comments