cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329008 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321.

Original entry on oeis.org

1, 1, 7, 5, 61, 91, 547, 205, 4921, 7381, 44287, 33215, 398581, 597871, 3587227, 672605, 32285041, 48427561, 290565367, 217924025, 2615088301, 3922632451, 23535794707, 8825923015, 211822152361, 317733228541, 1906399371247, 1429799528435, 17157594341221
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327321.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327321 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329008 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329009 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329010 *)
    (* Peter J. C. Moses, Nov 01 2019 *)
    Numerator[CoefficientList[Normal[Series[1/((4 + x)*(4 - 3*x)), {x, 0, 30}]], x]] (* Vaclav Kotesovec, Mar 19 2022 *)

Formula

a(2*n - 1) = A015518(2*n - 1). - Vaclav Kotesovec, Mar 19 2022