cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A327321 Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.

Original entry on oeis.org

1, 1, 3, 7, 18, 27, 5, 21, 27, 27, 61, 300, 630, 540, 405, 91, 549, 1350, 1890, 1215, 729, 547, 3822, 11529, 18900, 19845, 10206, 5103, 205, 1641, 5733, 11529, 14175, 11907, 5103, 2187, 4921, 44280, 177228, 412776, 622566, 612360, 428652, 157464, 59049, 7381
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

Suppose q is a rational number such that the number r = sqrt(q) is irrational. The function (r x + r)^n - (r x - 1/r)^n of x can be represented as k*p(x,n), where k is a constant and p(x,n) is a product of nonconstant polynomials having gcd = 1; the sequence p(x,n) is a strong divisibility sequence of polynomials; i.e., gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). For A327320, r = sqrt(3). If x is an integer, then p(x,n) is a strong divisibility sequence of integers.

Examples

			p(x,3) = (1/k)((4 (7 + 18 x + 27 x^2))/(3 sqrt(3))), where k = 4/(3 sqrt(3)).
First six rows:
   1;
   1,   3;
   7,  18,   27;
   5,  21,   27,   27;
  61, 300,  630,  540,  405;
  91, 549, 1350, 1890, 1215, 729;
The first six polynomials, not factored:
1, 1 + 3 x, 7 + 18 x + 27 x^2, 5 + 21 x + 27 x^2 + 27 x^3, 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, 91 + 549 x + 1350 x^2 + 1890 x^3 + 1215 x^4 + 729 x^5.
The first six polynomials, factored:
1, 1 + 3 x, 7 + 18 x + 27 x^2, (1 + 3 x) (5 + 6 x + 9 x^2), 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, (1 + 3 x) (13 + 6 x + 9 x^2) (7 + 18 x + 27 x^2).
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
    MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
    Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Table[f[x, n], {n, 1, 6}]
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]  (* A327321 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A329009 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321.

Original entry on oeis.org

1, 4, 52, 80, 1936, 5824, 69952, 52480, 2519296, 7558144, 90698752, 136048640, 3265171456, 9795518464, 117546237952, 44079841280, 4231664828416, 12694994550784, 152339934871552, 228509902438400, 5484237659570176, 16452712979759104, 197432555761303552
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327321.
		

Crossrefs

Programs

  • Maple
    A329009 := n -> 2^(n - 1 - padic[ordp](2*n, 2))*(3^n - 1):
    seq(A329009(n), n = 1..22);  # Peter Luschny, Mar 05 2022
  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327321 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329008 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329009 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329010 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

Formula

a(n) = 2^(n - 1 - A001511(n))*(3^n - 1). - Peter Luschny, Mar 05 2022

A329010 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321.

Original entry on oeis.org

1, 7, 151, 371, 13981, 64477, 1176211, 1333003, 96366841, 434627347, 7833057871, 17636587241, 635161281301, 2858836117417, 51465153629131, 28951056265019, 4169104690053361, 18761352574966687, 337708161046665991, 759848130726580511, 27354628073588539021
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327321.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327321 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329008 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329009 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329010 *)
    (* Peter J. C. Moses, Nov 01 2019 *)
Showing 1-3 of 3 results.