A329009 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321.
1, 4, 52, 80, 1936, 5824, 69952, 52480, 2519296, 7558144, 90698752, 136048640, 3265171456, 9795518464, 117546237952, 44079841280, 4231664828416, 12694994550784, 152339934871552, 228509902438400, 5484237659570176, 16452712979759104, 197432555761303552
Offset: 1
Keywords
Examples
See Example in A327321.
Programs
-
Maple
A329009 := n -> 2^(n - 1 - padic[ordp](2*n, 2))*(3^n - 1): seq(A329009(n), n = 1..22); # Peter Luschny, Mar 05 2022
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327321 *) Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329008 *) Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329009 *) Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329010 *) (* Peter J. C. Moses, Nov 01 2019 *)
Formula
a(n) = 2^(n - 1 - A001511(n))*(3^n - 1). - Peter Luschny, Mar 05 2022
Comments