A329010 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321.
1, 7, 151, 371, 13981, 64477, 1176211, 1333003, 96366841, 434627347, 7833057871, 17636587241, 635161281301, 2858836117417, 51465153629131, 28951056265019, 4169104690053361, 18761352574966687, 337708161046665991, 759848130726580511, 27354628073588539021
Offset: 1
Keywords
Examples
See Example in A327321.
Programs
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327321 *) Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329008 *) Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329009 *) Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329010 *) (* Peter J. C. Moses, Nov 01 2019 *)
Comments