cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A329011 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.

Original entry on oeis.org

1, 2, 7, 26, 521, 434, 13021, 8138, 36169, 813802, 8138021, 3390842, 203450521, 508626302, 1695421007, 1589457194, 127156575521, 35321270978, 3178914388021, 3973642985026, 26490953233507, 198682149251302, 1986821492513021, 413921144273546, 49670537312825521
Offset: 1

Views

Author

Clark Kimberling, Nov 23 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327322.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327322 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329011 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329012 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329013 *)
    (* Peter J. C. Moses, Nov 01 2019 *)

A329012 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.

Original entry on oeis.org

1, 7, 52, 406, 16496, 27664, 1663936, 2081968, 18513664, 833245952, 16665967616, 13888655872, 1666655481856, 8333310963712, 55555495903232, 104166621927424, 16666663803355136, 9259258622967808, 1666666620853682176, 4166666620853682176, 55555555311219638272
Offset: 1

Views

Author

Clark Kimberling, Nov 23 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)). Conjecture: there is no upper bound for the number of consecutive equal digits among numbers in this sequence, as suggested, for example, by 34 straight 1's in a(96) and 38 straight 6's in a(97).

Examples

			See Example in A327322.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327322 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329011 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329012 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329013 *)
    (* Peter J. C. Moses, Nov 01 2019 *)
Showing 1-2 of 2 results.