cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329027 The least missing digit in the primorial base expansion of n. Only significant digits are considered, as the leading zeros are ignored.

Original entry on oeis.org

0, 2, 0, 1, 0, 2, 2, 2, 0, 3, 0, 1, 3, 3, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 2, 2, 2, 2, 3, 3, 2, 2, 2, 0, 3, 0, 3, 3, 3, 0, 3, 0, 2, 2, 2, 0, 4, 0, 2, 2, 2, 0, 3, 0, 1, 3, 3, 3, 1, 3, 3, 3, 3, 0, 3, 0, 1, 3, 3, 0, 1, 0, 1, 4, 4, 0, 1, 0, 1, 3, 3, 0, 1, 0, 1, 2, 2, 2, 1, 4, 2, 2, 2, 0, 4, 0, 1, 4, 4, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 03 2019

Keywords

Comments

For n = 0 the value is ambiguous, thus the sequence starts from n=1.

Examples

			19 in primorial base (A049345) is written as "301". The least missing digit is 2, thus a(19) = 2.
		

Crossrefs

Cf. A328574 (after its initial term, gives the positions of zeros in this sequence), A328840 (after its initial term, gives the positions of ones in this sequence).

Programs

  • Mathematica
    a[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; Min[Complement[Range[0, Max[s]+1], s]]]; Array[a, 100] (* Amiram Eldar, Mar 13 2024 *)
  • PARI
    A329027(n) = { my(m=Map(), p=2); while(n, mapput(m,(n%p),1); n = n\p; p = nextprime(1+p)); for(k=0,oo,if(!mapisdefined(m,k),return(k))); };