cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329041 Square array read by antidiagonals: A(n, k) = A327936(A276086(n) * A276086(k)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 3, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 2, 1, 6, 3, 6, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Nov 03 2019

Keywords

Comments

Array A(n, k) is symmetric, and is read as (n,k) = (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3), ...
If A(n, k) is 1, it tells that adding of n and k do not generate any carries, when done in primorial base (A049345). If A(n, k) is larger than one, then its prime factors indicate in which specific moduli (digit positions) the sum was larger than allowed for that position.

Examples

			The top left corner of the array:
        0  1  2  3  4  5  6  7  8  9 10 11 12
      +--------------------------------------
   0: | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   1: | 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...
   2: | 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, ...
   3: | 1, 2, 1, 2, 3, 6, 1, 2, 1, 2, 3, 6, 1, ...
   4: | 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, ...
   5: | 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, ...
   6: | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   7: | 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...
   8: | 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, ...
   9: | 1, 2, 1, 2, 3, 6, 1, 2, 1, 2, 3, 6, 1, ...
  10: | 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, ...
  11: | 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, ...
  12: | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
...
A(11,25) = A(25,11) = 10 because 11 is written in primorial base representation (A049345) as "121" and 25 as "401", and when these are added together digit by digit, we see that the maximal allowed digits "421" for the rightmost three positions are exceeded in positions 1 and 3, with the 1st and 3rd primes 2 and 5 as their moduli, thus A(11,25) = 2*5 = 10.
		

Crossrefs

Programs

  • PARI
    up_to = 105;
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]>=f[k,1])); factorback(f); };
    A329041sq(row,col) = A327936(A276086(row)*A276086(col));
    A329041list(up_to) = { my(v = vector(up_to), i=0); for(a=0,oo, for(col=0,a, if(i++ > up_to, return(v)); v[i] = A329041sq(a-col,col))); (v); };
    v329041 = A329041list(up_to);
    A329041(n) = v329041[1+n];

Formula

A(n, k) = A327936(A276086(n) * A276086(k)).
For all n, A(A328841(n), A328842(n)) = 1 and A(A328770(n), A328770(n)) = 1.