A329041 Square array read by antidiagonals: A(n, k) = A327936(A276086(n) * A276086(k)).
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 3, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 2, 1, 6, 3, 6, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1
Offset: 0
Examples
The top left corner of the array: 0 1 2 3 4 5 6 7 8 9 10 11 12 +-------------------------------------- 0: | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1: | 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ... 2: | 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, ... 3: | 1, 2, 1, 2, 3, 6, 1, 2, 1, 2, 3, 6, 1, ... 4: | 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, ... 5: | 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, ... 6: | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 7: | 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ... 8: | 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, ... 9: | 1, 2, 1, 2, 3, 6, 1, 2, 1, 2, 3, 6, 1, ... 10: | 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, ... 11: | 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, ... 12: | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... ... A(11,25) = A(25,11) = 10 because 11 is written in primorial base representation (A049345) as "121" and 25 as "401", and when these are added together digit by digit, we see that the maximal allowed digits "421" for the rightmost three positions are exceeded in positions 1 and 3, with the 1st and 3rd primes 2 and 5 as their moduli, thus A(11,25) = 2*5 = 10.
Links
Programs
-
PARI
up_to = 105; A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]>=f[k,1])); factorback(f); }; A329041sq(row,col) = A327936(A276086(row)*A276086(col)); A329041list(up_to) = { my(v = vector(up_to), i=0); for(a=0,oo, for(col=0,a, if(i++ > up_to, return(v)); v[i] = A329041sq(a-col,col))); (v); }; v329041 = A329041list(up_to); A329041(n) = v329041[1+n];
Comments