A329050 Square array A(n,k) = prime(n+1)^(2^k), read by descending antidiagonals (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...; Fermi-Dirac primes (A050376) in matrix form, sorted into rows by their prime divisor.
2, 4, 3, 16, 9, 5, 256, 81, 25, 7, 65536, 6561, 625, 49, 11, 4294967296, 43046721, 390625, 2401, 121, 13, 18446744073709551616, 1853020188851841, 152587890625, 5764801, 14641, 169, 17, 340282366920938463463374607431768211456, 3433683820292512484657849089281, 23283064365386962890625, 33232930569601, 214358881, 28561, 289, 19
Offset: 0
Examples
The top left 5 X 5 corner of the array: n\k | 0 1 2 3 4 ----+------------------------------------------------------- 0 | 2, 4, 16, 256, 65536, ... 1 | 3, 9, 81, 6561, 43046721, ... 2 | 5, 25, 625, 390625, 152587890625, ... 3 | 7, 49, 2401, 5764801, 33232930569601, ... 4 | 11, 121, 14641, 214358881, 45949729863572161, ... Column 0 continues as a list of primes, column 1 as a list of their squares, column 2 as a list of their 4th powers, and so on. Every nonnegative power of 2 (A000079) is a product of a unique subset of numbers from row 0; every squarefree number (A005117) is a product of a unique subset of numbers from column 0. Likewise other rows and columns generate the sets of numbers from sequences: Row 1: A000244 Powers of 3. Column 1: A062503 Squares of squarefree numbers. Row 2: A000351 Powers of 5. Column 2: A113849 4th powers of squarefree numbers. Union of rows 0 and 1: A003586 3-smooth numbers. Union of columns 0 and 1: A046100 Biquadratefree numbers. Union of row 0 / column 0: A122132 Oddly squarefree numbers. Row 0 excluding column 0: A000302 Powers of 4. Column 0 excluding row 0: A056911 Squarefree odd numbers. All rows except 0: A005408 Odd numbers. All columns except 0: A000290\{0} Positive squares. All rows except 1: A001651 Numbers not divisible by 3. All columns except 1: A252895 (have odd number of square divisors). If, instead of restrictions on choosing individual factors of the product, we restrict the product to be of an even number of terms from each row of the array, we get A262675. The equivalent restriction applied to columns gives us A268390; applied only to column 0, we get A028260 (product of an even number of primes).
Links
- Antti Karttunen, Table of n, a(n) for n = 0..77; the first 12 antidiagonals of array
- Wikipedia, Polynomial ring
Crossrefs
Programs
-
Mathematica
Table[Prime[#]^(2^k) &[m - k + 1], {m, 0, 7}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Dec 28 2019 *)
-
PARI
up_to = 105; A329050sq(n,k) = (prime(1+n)^(2^k)); A329050list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A329050sq(col, a-col))); (v); }; v329050 = A329050list(up_to); A329050(n) = v329050[1+n]; for(n=0,up_to-1,print1(A329050(n),", ")); \\ Antti Karttunen, Nov 06 2019
Formula
Extensions
Example annotated for clarity by Peter Munn, Feb 12 2020
Comments