A329057 1-parking triangle T(r, i, 1) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 1 and 0 <= i <= r.
1, 1, 1, 2, 3, 3, 5, 10, 16, 16, 14, 35, 75, 125, 125, 42, 126, 336, 756, 1296, 1296, 132, 462, 1470, 4116, 9604, 16807, 16807, 429, 1716, 6336, 21120, 61440, 147456, 262144, 262144, 1430, 6435, 27027, 104247, 360855, 1082565, 2657205, 4782969, 4782969, 4862, 24310, 114400, 500500, 2002000, 7150000, 22000000, 55000000, 100000000, 100000000
Offset: 0
Examples
r/i| 0 1 2 3 4 ——————————————————————— 0 | 1 1 | 1 1 2 | 2 3 3 3 | 5 10 16 16 4 | 14 35 75 125 125
Links
- Stefano Spezia, First 151 rows of the triangle, flattened
- Carolina Benedetti, Rafael S. González D’León, Christopher R. H. Hanusa, Pamela E. Harris, Apoorva Khare, Alejandro H. Morales, Martha Yip, The volume of the caracol polytope, Séminaire Lotharingien de Combinatoire 80B.87 (2018).
- Martha Yip, A Fuss-Catalan variation of the caracol flow polytope, arXiv:1910.10060 [math.CO], 2019.
Programs
-
Mathematica
T[r_, i_,k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r,i,1],{r,0,9},{i,0,r}]]
Comments