cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329058 2-parking triangle T(r, i, 2) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 2 and 0 <= i <= r.

Original entry on oeis.org

1, 2, 1, 7, 6, 3, 30, 36, 32, 16, 143, 220, 275, 250, 125, 728, 1365, 2184, 2808, 2592, 1296, 3876, 8568, 16660, 27440, 36015, 33614, 16807, 21318, 54264, 124032, 248064, 417792, 557056, 524288, 262144, 120175, 346104, 908523, 2133054, 4363065, 7479540, 10097379, 9565938, 4782969
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2019

Keywords

Comments

The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip).

Examples

			r/i|   0   1   2   3   4
————————————————————————
0  |   1
1  |   2   1
2  |   7   6   3
3  |  30  36  32  16
4  | 143 220 275 250 125
		

Crossrefs

Programs

  • Mathematica
    T[r_, i_,k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r,i,2],{r,0,9},{i,0,r}]]

Formula

T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i).
T(r, 0, 2) = A006013(r).
T(r, r, 2) = A000272(r + 1).