A329070 Array read by ascending antidiagonals: T(n, k) = (k*n)!/(k^n*(1/k)_n) with (n >= 0 and k >= 1), where (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol.
1, 1, 1, 1, 2, 1, 1, 8, 6, 1, 1, 48, 180, 24, 1, 1, 384, 12960, 8064, 120, 1, 1, 3840, 1710720, 10644480, 604800, 720, 1, 1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1, 1, 645120, 109930867200, 244635697152000, 2303884477440000, 70355755008000, 10897286400, 40320, 1
Offset: 0
Examples
Array T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows: 1, 1, 1, 1, 1, 1, ... 1, 2, 6, 24, 120, 720, ... 1, 8, 180, 8064, 604800, 68428800, ... 1, 48, 12960, 10644480, 19813248000, 70355755008000, ... ... Triangular array S(m,s) = T(m-s, s+1) (with rows m >= 0 and columns s >= 0): 1; 1, 1; 1, 2, 1; 1, 8, 6, 1; 1, 48, 180, 24, 1; 1, 384, 12960, 8064, 120, 1; 1, 3840, 1710720, 10644480, 604800, 720, 1; 1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1; ...
Links
- Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125; see Theorem 3.2 (p. 116).
- Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
- Eric Weisstein's World of Mathematics, Pochhammer Symbol.
- Wikipedia, Falling and rising factorials.
Crossrefs
Programs
-
Maple
A := (n, k) -> `if`(k=0, 1, (GAMMA(1/k)*GAMMA(k*n+1))/(GAMMA(n+1/k)*k^n)): seq(seq(A(n-k-1, k), k=1..n-1), n=0..10); # Peter Luschny, Nov 04 2019
Formula
T(0,k) = 1, T(1,k) = k!, and T(2,k) = (2*k)!/(k + 1) for k >= 1.
T(n,1) = 1, T(n,2) = (2*n)!!, and T(n,3) is related to the Airy functions (see the documentation of A176730).
T(n+1,k) = (k-1)! * binomial(k*(n+1), k-1) * T(n,k) for n >= 0 and k >= 1.
T(n+1,k)/(k! * T(n,k)) = Cat(n+1, k), where Cat(d, k) = binomial(k*d, k)/(k * (d - 1) + 1) is a Fuss-Catalan number; see Theorem 1.2 in Schuetz and Whieldon (2014).
If F(k,z) = Sum_{n >= 0} z^(k*n)/T(n,k), then F(k,z) satisfies the o.d.e. F^(k-1)(k,z) - z*F(k,z) = 0.
If W_m(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^((m+2)*n + 1)/(T(n, m+2)*((m + 2)*n + 1)), then 1/W_m(z) is the e.g.f. of row m of A327722(m,n), which counts permutations of [n] that avoid the consecutive pattern 12...(m+1)(m+3)(m+2) (or equivalently, the consecutive pattern (m+3)(m+2)...(3)(1)(2)).
The function W_m(z) satisfies the o.d.e. W_m^(m+2)(z) + z*W_m'(z) = 0 with W_m(0) = 1, W_m'(0) = -1, and W_m^(s)(0) = 0 for s = 2..(m + 1).
Comments