A329084 Decimal expansion of Sum_{k>=0} 1/(k^2+3).
1, 0, 7, 3, 6, 0, 0, 4, 0, 9, 9, 1, 5, 1, 8, 4, 1, 1, 5, 9, 1, 3, 9, 3, 6, 2, 9, 8, 1, 5, 8, 1, 4, 5, 3, 1, 1, 2, 7, 6, 4, 4, 2, 6, 3, 5, 7, 1, 8, 7, 8, 4, 5, 7, 8, 9, 6, 0, 3, 6, 8, 7, 5, 1, 9, 5, 8, 6, 6, 7, 5, 2, 3, 1, 8, 4, 5, 6, 3, 4, 5, 9, 8, 8, 5, 8, 4, 8, 2, 4, 9
Offset: 1
Examples
1.07360040991518411591...
Crossrefs
Programs
-
Mathematica
RealDigits[Sum[1/(k^2+3),{k,0,\[Infinity]}],10,120][[1]] (* Harvey P. Dale, Jul 05 2021 *) RealDigits[(1 + Sqrt[3]*Pi*Coth[Sqrt[3]*Pi])/6, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
-
PARI
default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(3)
-
PARI
sumnumrat(1/(x^2+3), 0) \\ Charles R Greathouse IV, Jan 20 2022
Formula
Equals (1 + (sqrt(3)*Pi)*coth(sqrt(3)*Pi))/6 = (1 + (sqrt(-3)*Pi)*cot(sqrt(-3)*Pi))/6.
Comments