A329128 Number of nonequivalent sets whose translations and reflections cover {1..n}.
1, 2, 3, 6, 8, 17, 24, 52, 77, 171, 265, 593, 952, 2131, 3519, 7846, 13238, 29351, 50374, 111031, 193155, 423403, 744616, 1624302, 2881784, 6260030, 11186219, 24213106, 43522800, 93922741, 169653109, 365172178
Offset: 1
Examples
For n = 4 there are 6 sets (up to equivalence) that with their reflections and translations cover {1..4}: {{1}, {2}, {3}, {4}}; {{1, 2}, {2, 3}, {3, 4}}; {{1, 3}, {2, 4}}; {{1, 2, 4}, {1, 3, 4}}; {{1, 2, 3}, {2, 3, 4}}; {{1, 2, 3, 4}}. . For n = 5 there are 8 sets (up to equivalence) that with their reflections and translations cover {1..5}: {{1}, {2}, {3}, {4}, {5}}; {{1, 2}, {2, 3}, {3, 4}, {4, 5}}; {{1, 3}, {2, 4}, {3, 5}}; {{1, 2, 4}, {1, 3, 4}, {2, 3, 5}, {2, 4, 5}}; {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}; {{1, 2, 3, 5}, {1, 3, 4, 5}}; {{1, 2, 3, 4}, {2, 3, 4, 5}}; {{1, 2, 3, 4, 5}}.
Comments