A329132 Numbers whose augmented differences of prime indices are a periodic sequence.
4, 8, 15, 16, 32, 55, 64, 90, 105, 119, 128, 225, 253, 256, 403, 512, 540, 550, 697, 893, 935, 1024, 1155, 1350, 1357, 1666, 1943, 2048, 2263, 3025, 3071, 3150, 3240, 3375, 3451, 3927, 3977, 4096, 4429, 5123, 5500, 5566, 6731, 7735, 8083, 8100, 8192, 9089
Offset: 1
Keywords
Examples
The sequence of terms together with their augmented differences of prime indices begins: 4: (1,1) 8: (1,1,1) 15: (2,2) 16: (1,1,1,1) 32: (1,1,1,1,1) 55: (3,3) 64: (1,1,1,1,1,1) 90: (2,1,2,1) 105: (2,2,2) 119: (4,4) 128: (1,1,1,1,1,1,1) 225: (1,2,1,2) 253: (5,5) 256: (1,1,1,1,1,1,1,1) 403: (6,6) 512: (1,1,1,1,1,1,1,1,1) 540: (2,1,1,2,1,1) 550: (3,1,3,1) 697: (7,7) 893: (8,8)
Crossrefs
Complement of A329133.
These are the Heinz numbers of the partitions counted by A329143.
Periodic binary words are A152061.
Periodic compositions are A178472.
Numbers whose binary expansion is periodic are A121016.
Numbers whose prime signature is periodic are A329140.
Numbers whose differences of prime indices are periodic are A329134.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; aug[y_]:=Table[If[i
Comments