A329136 Number of integer partitions of n whose augmented differences are an aperiodic word.
1, 1, 1, 2, 4, 5, 10, 14, 19, 28, 40, 53, 75, 99, 131, 172, 226, 294, 380, 488, 617, 787, 996, 1250, 1565, 1953, 2425, 3003, 3705, 4559, 5589, 6836, 8329, 10132, 12292, 14871, 17950, 21629, 25988, 31169, 37306, 44569, 53139, 63247, 75133, 89111, 105515, 124737
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 14 partitions: (1) (2) (3) (4) (5) (6) (7) (2,1) (2,2) (4,1) (3,3) (4,3) (3,1) (2,2,1) (4,2) (5,2) (2,1,1) (3,1,1) (5,1) (6,1) (2,1,1,1) (2,2,2) (3,2,2) (3,2,1) (3,3,1) (4,1,1) (4,2,1) (2,2,1,1) (5,1,1) (3,1,1,1) (2,2,2,1) (2,1,1,1,1) (3,2,1,1) (4,1,1,1) (2,2,1,1,1) (3,1,1,1,1) (2,1,1,1,1,1) With augmented differences: (1) (2) (3) (4) (5) (6) (7) (2,1) (1,2) (4,1) (1,3) (2,3) (3,1) (1,2,1) (3,2) (4,2) (2,1,1) (3,1,1) (5,1) (6,1) (2,1,1,1) (1,1,2) (1,3,1) (2,2,1) (2,1,2) (4,1,1) (3,2,1) (1,2,1,1) (5,1,1) (3,1,1,1) (1,1,2,1) (2,1,1,1,1) (2,2,1,1) (4,1,1,1) (1,2,1,1,1) (3,1,1,1,1) (2,1,1,1,1,1)
Crossrefs
The Heinz numbers of these partitions are given by A329133.
The periodic version is A329143.
The non-augmented version is A329137.
Aperiodic binary words are A027375.
Aperiodic compositions are A000740.
Numbers whose binary expansion is aperiodic are A328594.
Numbers whose differences of prime indices are aperiodic are A329135.
Numbers whose prime signature is aperiodic are A329139.
Programs
-
Mathematica
aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; aug[y_]:=Table[If[i
Comments