cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329155 Expansion of Product_{k>=1} 1 / (1 - 2*x^k - 3*x^(2*k))^(1/2).

Original entry on oeis.org

1, 1, 4, 9, 27, 67, 193, 515, 1462, 4070, 11588, 32898, 94389, 271017, 782401, 2263002, 6565987, 19086043, 55597255, 162207806, 473992799, 1386875848, 4062919108, 11915397853, 34979609583, 102781548770, 302259362326, 889566748760, 2619915414564, 7721166976185
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[1/(1 - 2 x^k - 3 x^(2 k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Exp[Sum[Sum[(3^d + (-1)^d)/d, {d, Divisors[k]}] x^k/2, {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 - x^(2*k - 1)) / (1 - 3*x^k))^(1/2).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (3^d + (-1)^d) / d ) * x^k / 2).
G.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = g.f. of A002426 (central trinomial coefficients).
a(n) ~ c * 3^(n + 1/2) / (2*sqrt(Pi*n)), where c = sqrt(Product_{k>=2} 1/((1 - 1/3^(k-1))*(1 + 1/3^k))) = sqrt(8 / (3 * QPochhammer[-1, 1/3] * QPochhammer[1/3])) = 1.23332761652608605487734981242239445... - Vaclav Kotesovec, Nov 07 2019