A329177 Numbers k such that k![4] - 256 is prime, where k![4] = A007662(k) = quadruple factorial.
15, 17, 19, 21, 23, 25, 33, 39, 41, 43, 53, 63, 67, 73, 157, 167, 181, 195, 221, 327, 363, 419, 849, 861, 1233, 1265, 1599, 2413, 2515, 4009, 8291, 8475, 10685, 13957, 17453, 18409, 19117, 22739, 33313, 37861, 59703, 64983, 80697
Offset: 1
Keywords
Links
- C. K. Caldwell, The Prime Glossary, multifactorial prime
- C. Caldwell and H. Dubner (Eds): The top ten prime numbers: from the unpublished collections of R. Ondrejka (May 2001), Table 21 F, p. 75.
- Ken Davis, Status of Search for Multifactorial Primes.
- Joe McLean, Interesting Sources of Probable Primes
Programs
-
Mathematica
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[1000], (x = MultiFactorial[#, 4] - 256; x > 0 && PrimeQ[x]) &] Select[Range[10,1600],PrimeQ[Times@@Range[#,1,-4]-256]&] (* The program generates the first 27 terms of the sequence. To generate more, increase the second Range constant but the program may take a long time to run. *) (* Harvey P. Dale, Aug 01 2022 *)
Comments