cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A329208 Decimal expansion of the fundamental frequency of the note C#4/Db4 in hertz.

Original entry on oeis.org

2, 7, 7, 1, 8, 2, 6, 3, 0, 9, 7, 6, 8, 7, 2, 0, 9, 6, 2, 4, 8, 7, 8, 6, 3, 3, 3, 6, 0, 1, 2, 1, 0, 2, 3, 7, 1, 2, 5, 4, 5, 5, 3, 2, 2, 2, 3, 4, 3, 3, 1, 7, 5, 5, 6, 1, 8, 0, 3, 4, 5, 2, 4, 6, 7, 4, 1, 6, 5, 9, 2, 8, 8, 3, 3, 0, 7, 1, 0, 8, 6, 4, 2, 0, 4, 6, 7, 2, 4, 3, 7
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note C#4/Db4 (8 semitones below A4) is 440*2^(-8/12) Hz = 277.2 Hz.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (this seq)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (A329209)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (A329210)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (A329211)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (A329212)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (A329213)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (A329214)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (A329215)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (A329217)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (A329218)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    First[RealDigits[220*2^(1/3), 10, 100]] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    default(realprecision, 100); 440 * 2^(-8/12)

Formula

Equals 220 * 2^(1/3).

A329209 Decimal expansion of the fundamental frequency of the note D4 in hertz.

Original entry on oeis.org

2, 9, 3, 6, 6, 4, 7, 6, 7, 9, 1, 7, 4, 0, 7, 5, 6, 0, 2, 6, 2, 7, 8, 3, 0, 1, 3, 8, 6, 0, 5, 7, 9, 6, 1, 0, 4, 8, 0, 7, 2, 5, 8, 4, 6, 7, 7, 7, 5, 4, 3, 6, 2, 5, 3, 2, 6, 5, 7, 3, 5, 7, 8, 6, 7, 4, 5, 8, 8, 5, 4, 6, 9, 2, 5, 0, 5, 0, 6, 2, 4, 5, 2, 1, 7, 2, 5, 9, 5, 0, 0
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note D4 (7 semitones below A4) is 440*2^(-7/12) Hz = 293.7 Hz.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (A329208)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (this seq)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (A329210)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (A329211)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (A329212)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (A329213)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (A329214)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (A329215)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (A329217)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (A329218)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    RealDigits[440 1/Surd[2^7,12],10,120][[1]] (* Harvey P. Dale, Aug 01 2021 *)
  • PARI
    default(realprecision, 100); 440 * 2^(-7/12)

Formula

Equals 220 * 2^(5/12).

A329210 Decimal expansion of the fundamental frequency of the note D#4/Eb4 in hertz.

Original entry on oeis.org

3, 1, 1, 1, 2, 6, 9, 8, 3, 7, 2, 2, 0, 8, 0, 9, 1, 0, 7, 3, 6, 3, 7, 1, 5, 1, 9, 3, 2, 6, 1, 3, 3, 5, 7, 7, 2, 8, 5, 3, 2, 7, 8, 1, 2, 5, 8, 2, 9, 2, 8, 5, 7, 6, 0, 9, 8, 8, 6, 9, 5, 4, 2, 3, 5, 7, 9, 6, 1, 1, 4, 5, 2, 6, 1, 6, 6, 3, 5, 4, 8, 5, 4, 7, 0, 8, 5, 2, 5, 7, 5
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note D#4/Eb4 (6 semitones below A4) is 440*2^(-6/12) Hz = 311.1 Hz.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (A329208)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (A329209)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (this seq)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (A329211)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (A329212)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (A329213)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (A329214)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (A329215)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (A329217)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (A329218)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    First[RealDigits[220*Sqrt[2], 10, 100]] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    default(realprecision, 100); 440 * 2^(-6/12)

Formula

Equals 220 * sqrt(2).

A329211 Decimal expansion of the fundamental frequency of the note E4 in hertz.

Original entry on oeis.org

3, 2, 9, 6, 2, 7, 5, 5, 6, 9, 1, 2, 8, 6, 9, 9, 2, 9, 7, 3, 5, 8, 4, 1, 7, 6, 1, 0, 4, 6, 5, 5, 5, 0, 7, 5, 1, 8, 6, 4, 7, 3, 3, 4, 1, 8, 2, 0, 9, 8, 4, 3, 1, 2, 8, 1, 7, 0, 2, 5, 2, 4, 5, 7, 0, 3, 1, 3, 4, 6, 9, 6, 0, 7, 2, 3, 8, 2, 1, 1, 8, 5, 5, 2, 0, 3, 0, 9, 5, 5, 3
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note E4 (5 semitones below A4) is 440*2^(-5/12) Hz = 329.6 Hz.
Also the frequency of the first string of a guitar when standard tuning is used.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (A329208)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (A329209)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (A329210)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (this seq)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (A329212)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (A329213)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (A329214)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (A329215)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (A329217)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (A329218)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    First[RealDigits[220*2^(7/12), 10, 100]] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    default(realprecision, 100); 440 * 2^(-5/12)

Formula

Equals 220 * 2^(7/12).

A329212 Decimal expansion of the fundamental frequency of the note F4 in hertz.

Original entry on oeis.org

3, 4, 9, 2, 2, 8, 2, 3, 1, 4, 3, 3, 0, 0, 3, 8, 8, 4, 4, 4, 5, 3, 7, 5, 2, 4, 0, 6, 3, 9, 9, 0, 7, 8, 1, 7, 2, 8, 6, 1, 2, 8, 5, 3, 2, 1, 3, 7, 9, 6, 7, 6, 6, 2, 1, 5, 7, 8, 2, 2, 8, 6, 7, 6, 0, 1, 5, 4, 7, 6, 3, 1, 2, 3, 7, 3, 2, 8, 2, 1, 8, 1, 2, 0, 1, 7, 9, 7, 2, 6, 9
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note F4 (4 semitones below A4) is 440*2^(-4/12) Hz = 349.2 Hz.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (A329208)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (A329209)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (A329210)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (A329211)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (this seq)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (A329213)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (A329214)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (A329215)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (A329217)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (A329218)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    RealDigits[220 Surd[4,3],10,120][[1]] (* Harvey P. Dale, Jul 31 2021 *)
  • PARI
    default(realprecision, 100); 440 * 2^(-4/12)

Formula

Equals 220 * 2^(2/3).

A329213 Decimal expansion of the fundamental frequency of the note F#4/Gb4 in hertz.

Original entry on oeis.org

3, 6, 9, 9, 9, 4, 4, 2, 2, 7, 1, 1, 6, 3, 4, 3, 9, 8, 9, 3, 3, 6, 9, 5, 2, 0, 9, 5, 4, 2, 6, 1, 4, 5, 5, 3, 8, 1, 7, 6, 1, 5, 0, 7, 5, 4, 3, 6, 9, 8, 5, 1, 8, 4, 7, 5, 7, 8, 1, 9, 4, 7, 7, 8, 2, 8, 9, 6, 6, 8, 9, 2, 1, 7, 9, 7, 1, 6, 9, 8, 5, 5, 1, 8, 3, 0, 2, 5, 6, 1, 8
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note F#4/Gb4 (3 semitones below A4) is 440*2^(-3/12) Hz = 370.0 Hz.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (A329208)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (A329209)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (A329210)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (A329211)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (A329212)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (this seq)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (A329214)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (A329215)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (A329217)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (A329218)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    RealDigits[220*Surd[8,4],10,120][[1]] (* Harvey P. Dale, May 05 2023 *)
  • PARI
    default(realprecision, 100); 440 * 2^(-3/12)

Formula

Equals 220 * 2^(3/4).

A329214 Decimal expansion of the fundamental frequency of the note G4 in hertz.

Original entry on oeis.org

3, 9, 1, 9, 9, 5, 4, 3, 5, 9, 8, 1, 7, 4, 9, 2, 9, 4, 0, 8, 5, 6, 9, 9, 5, 3, 0, 4, 5, 9, 8, 2, 5, 5, 0, 3, 5, 1, 4, 3, 7, 3, 5, 5, 0, 9, 8, 6, 3, 9, 0, 5, 7, 7, 4, 8, 8, 8, 5, 3, 0, 7, 6, 5, 9, 0, 8, 4, 9, 5, 5, 3, 4, 5, 8, 9, 3, 5, 4, 9, 6, 7, 6, 0, 5, 1, 1, 3, 3, 7, 5
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note G4 (2 semitones below A4) is 440*2^(-2/12) Hz = 392.0 Hz.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (A329208)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (A329209)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (A329210)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (A329211)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (A329212)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (A329213)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (this seq)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (A329215)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (A329217)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (A329218)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    First[RealDigits[220*2^(5/6), 10, 100]] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    default(realprecision, 100); 440 * 2^(-2/12)

Formula

Equals 220 * 2^(5/6).

A329215 Decimal expansion of the fundamental frequency of the note G#4/Ab4 in hertz.

Original entry on oeis.org

4, 1, 5, 3, 0, 4, 6, 9, 7, 5, 7, 9, 9, 4, 5, 1, 3, 8, 5, 2, 2, 4, 4, 1, 7, 8, 8, 9, 3, 3, 7, 1, 5, 1, 2, 5, 4, 4, 3, 3, 3, 0, 0, 5, 3, 4, 6, 9, 0, 4, 6, 8, 3, 8, 0, 4, 6, 5, 3, 5, 0, 6, 2, 6, 2, 0, 0, 4, 6, 0, 5, 4, 6, 0, 5, 0, 3, 0, 9, 4, 9, 3, 3, 9, 8, 8, 7, 3, 2, 0, 0
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note G#4/Ab4 (1 semitone below A4) is 440*2^(-1/12) Hz = 415.3 Hz.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (A329208)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (A329209)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (A329210)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (A329211)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (A329212)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (A329213)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (A329214)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (this seq)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (A329217)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (A329218)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    First[RealDigits[220*2^(11/12), 10, 100]] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    default(realprecision, 100); 440 * 2^(-1/12)

Formula

Equals 220 * 2^(11/12).

A329217 Decimal expansion of the fundamental frequency of the note A#4/Bb4 in hertz.

Original entry on oeis.org

4, 6, 6, 1, 6, 3, 7, 6, 1, 5, 1, 8, 0, 8, 9, 9, 1, 6, 4, 0, 7, 2, 0, 3, 1, 2, 9, 7, 7, 6, 3, 9, 0, 3, 4, 8, 3, 4, 2, 8, 4, 9, 8, 9, 9, 6, 9, 7, 4, 4, 1, 6, 7, 6, 5, 6, 6, 0, 5, 1, 7, 0, 9, 8, 4, 1, 8, 5, 5, 1, 2, 4, 2, 6, 7, 8, 3, 2, 5, 1, 7, 8, 4, 8, 8, 5, 8, 0, 8, 5, 8
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note A#4/Bb4 (1 semitone above A4) is 440*2^(1/12) Hz = 466.2 Hz.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (A329208)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (A329209)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (A329210)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (A329211)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (A329212)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (A329213)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (A329214)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (A329215)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (this seq)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (A329218)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    First[RealDigits[440*2^(1/12), 10, 100]] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    default(realprecision, 100); 440 * 2^(1/12)

Formula

Equals 440 * 2^(1/12).

A329218 Decimal expansion of the fundamental frequency of the note B4 in hertz.

Original entry on oeis.org

4, 9, 3, 8, 8, 3, 3, 0, 1, 2, 5, 6, 1, 2, 4, 1, 1, 1, 8, 3, 0, 7, 5, 4, 5, 4, 1, 8, 5, 8, 8, 3, 8, 9, 8, 7, 1, 4, 2, 2, 6, 0, 8, 8, 8, 6, 7, 0, 1, 5, 4, 1, 7, 1, 5, 1, 3, 7, 8, 0, 2, 0, 0, 1, 8, 8, 4, 7, 7, 7, 6, 2, 4, 4, 8, 9, 7, 8, 9, 4, 8, 7, 1, 8, 6, 8, 6, 2, 1, 9, 9
Offset: 3

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

In 12-tone equal temperament, when A4 (the fifth A on the Piano keyboard) is tuned to 440 Hz, the frequency of the note B4 (2 semitones above A4) is 440*2^(2/12) Hz = 493.9 Hz.

Examples

			Frequencies of notes in an octave (Hz):
   >--------------------------------------------------
  |
  |  C4                  261.6255653005...  (A329207)
  |           +---------------------------------------
   >----------| C#4/Db4  277.1826309768...  (A329208)
  |           +---------------------------------------
  |  D4                  293.6647679174...  (A329209)
  |           +---------------------------------------
   >----------| D#4/Eb4  311.1269837220...  (A329210)
  |           +---------------------------------------
  |  E4                  329.6275569128...  (A329211)
  |
   >--------------------------------------------------
  |
  |  F4                  349.2282314330...  (A329212)
  |           +---------------------------------------
   >----------| F#4/Gb4  369.9944227116...  (A329213)
  |           +---------------------------------------
  |  G4                  391.9954359817...  (A329214)
  |           +---------------------------------------
   >----------| G#4/Ab4  415.3046975799...  (A329215)
  |           +---------------------------------------
  |  A4                  440.0000000000
  |           +---------------------------------------
   >----------| A#4/Bb4  466.1637615180...  (A329217)
  |           +---------------------------------------
  |  B4                  493.8833012561...  (this seq)
  |
   >--------------------------------------------------
[New layout from _Jon E. Schoenfield_, Nov 08 2019]
		

Crossrefs

See the Example section above for the fundamental frequency of some other notes.

Programs

  • Mathematica
    RealDigits[440 Surd[2,6],10,120][[1]] (* Harvey P. Dale, Oct 16 2022 *)
  • PARI
    default(realprecision, 100); 440 * 2^(1/6)

Formula

Equals 440 * 2^(1/6).
Showing 1-10 of 11 results. Next