cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329246 Decimal expansion of Sum_{k>=1} cos(k*Pi/4)/k.

Original entry on oeis.org

2, 6, 7, 3, 9, 9, 9, 9, 8, 3, 6, 9, 7, 8, 5, 1, 8, 5, 2, 6, 1, 9, 9, 6, 6, 3, 2, 1, 2, 5, 3, 5, 2, 0, 1, 2, 4, 9, 5, 2, 0, 5, 1, 3, 0, 5, 4, 0, 7, 5, 3, 8, 9, 1, 8, 4, 6, 4, 7, 7, 8, 0, 1, 9, 5, 3, 3, 4, 0, 1, 8, 6, 6, 1, 8, 5, 8, 9, 3, 6, 5, 0, 1, 5, 3, 8, 7, 6, 1, 4, 2
Offset: 0

Views

Author

Jianing Song, Nov 09 2019

Keywords

Comments

Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i is the imaginary unit.
In general, for real s and complex z, let f(s,z) = Sum_{k>=1} z^k/k^s, then:
(a) if s <= 0, then f(s,z) converges to Polylog(s,z) if |z| < 1;
(b) if 0 < s <= 1, then f(s,z) converges to Polylog(s,z) if z != 1;
(c) if s > 1, then f(s,z) converges to Polylog(s,z) if |z| <= 1.
As a result, let z = e^(i*x), then the series Sum_{k>=1} (cos(k*x) + i*sin(k*x))/k^s converges to Polylog(s,e^(i*x)) if and only if s > 1, or 0 < s <= 1 and x != 2*m*Pi.

Examples

			Sum_{k>=1} cos(k*Pi/4)/k = -log(2*|sin(Pi/8)|) = 0.2673999983...
		

Crossrefs

Similar sequences:
A263192 (Sum_{k>=1} cos(k)/sqrt(k) = Re(Polylog(1/2,exp(i))));
A263193 (Sum_{k>=1} sin(k)/sqrt(k) = Im(Polylog(1/2,exp(i))));
A329247 (Sum_{k>=1} cos(k*Pi/6)/k = Re(Polylog(1,exp(i*Pi/6))));
A121225 (Sum_{k>=1} cos(k)/k = Re(Polylog(1,exp(i))));
this sequence (Sum_{k>=1} cos(k*Pi/4)/k = Re(Polylog(1,exp(i*Pi/4))));
A096444 (Sum_{k>=1} sin(k)/k = Im(Polylog(1,exp(i))));
A122143 (Sum_{k>=1} cos(k)/k^2 = Re(Polylog(2,exp(i))));
A096418 (Sum_{k>=1} sin(k)/k^2 = Im(Polylog(2,exp(i)))).

Programs

  • Mathematica
    RealDigits[Log[1 + Sqrt[2]/2]/2, 10, 120][[1]] (* Amiram Eldar, May 31 2023 *)
  • PARI
    default(realprecision, 100); log(1 + sqrt(2)/2)/2

Formula

Equals log(1 + sqrt(2)/2)/2.