A329247 Decimal expansion of Sum_{k>=1} cos(k*Pi/6)/k.
6, 5, 8, 4, 7, 8, 9, 4, 8, 4, 6, 2, 4, 0, 8, 3, 5, 4, 3, 1, 2, 5, 2, 3, 1, 7, 3, 6, 5, 3, 9, 8, 4, 2, 2, 2, 0, 1, 3, 4, 9, 0, 9, 8, 5, 7, 3, 3, 7, 5, 8, 2, 3, 9, 8, 8, 4, 2, 3, 6, 1, 2, 8, 4, 6, 0, 2, 3, 0, 0, 9, 2, 7, 0, 8, 2, 2, 1, 9, 8, 8, 0, 3, 7, 1, 0, 9, 5, 0, 6, 7
Offset: 0
Examples
0.65847894846240835431252317365398422201349098573375...
Links
- Cornel Ioan Vălean, Problem 11930, The American Mathematical Monthly, Vol. 123, No. 8 (2016), p. 831; A Telescoping Series with Inverse Hyperbolic Sine, Solution to Problem 11930 by Ángel Plaza, ibid., Vol. 125, No. 6 (2018), pp. 568-569.
Crossrefs
Similar sequences:
A263192 (Sum_{k>=1} cos(k)/sqrt(k) = Re(Polylog(1/2,exp(i))));
A263193 (Sum_{k>=1} sin(k)/sqrt(k) = Im(Polylog(1/2,exp(i))));
this sequence (Sum_{k>=1} cos(k*Pi/6)/k = Re(Polylog(1,exp(i*Pi/6))));
A121225 (Sum_{k>=1} cos(k)/k = Re(Polylog(1,exp(i))));
A329246 (Sum_{k>=1} cos(k*Pi/4)/k = Re(Polylog(1,exp(i*Pi/4))));
A096444 (Sum_{k>=1} sin(k)/k = Im(Polylog(1,exp(i))));
A122143 (Sum_{k>=1} cos(k)/k^2 = Re(Polylog(2,exp(i))));
A096418 (Sum_{k>=1} sin(k)/k^2 = Im(Polylog(2,exp(i)))).
Programs
-
Maple
Digits := 100: (log(2 + sqrt(3))/2)*10^91: ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Nov 09 2019
-
Mathematica
RealDigits[Log[2 + Sqrt[3]]/2, 10, 100][[1]] (* Amiram Eldar, Dec 05 2021 *)
-
PARI
default(realprecision, 100); log(2 + sqrt(3))/2
Formula
Equals log(2 + sqrt(3))/2.
Equals -log(2*sin(Pi/12)).
Equals arccoth(sqrt(3)). - Amiram Eldar, Dec 05 2021
From Amiram Eldar, Mar 26 2022: (Start)
Equals arcsinh(1/sqrt(2)).
Equals Sum_{n>=1} arcsinh(1/(sqrt(2^(n+2)+2)+sqrt(2^(n+1)+2))) (Vălean, 2106). (End)
log(2 + sqrt(3))/2 = Sum_{n >= 1} 1/(n*P(n, sqrt(3))*P(n-1, sqrt(3))), where P(n, x) denotes the n-th Legendre polynomial. The first ten terms of the series gives the approximation log(2 + sqrt(3))/2 = 0.658478948(35...) correct to 9 decimal places. - Peter Bala, Mar 16 2024
Comments