cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329247 Decimal expansion of Sum_{k>=1} cos(k*Pi/6)/k.

Original entry on oeis.org

6, 5, 8, 4, 7, 8, 9, 4, 8, 4, 6, 2, 4, 0, 8, 3, 5, 4, 3, 1, 2, 5, 2, 3, 1, 7, 3, 6, 5, 3, 9, 8, 4, 2, 2, 2, 0, 1, 3, 4, 9, 0, 9, 8, 5, 7, 3, 3, 7, 5, 8, 2, 3, 9, 8, 8, 4, 2, 3, 6, 1, 2, 8, 4, 6, 0, 2, 3, 0, 0, 9, 2, 7, 0, 8, 2, 2, 1, 9, 8, 8, 0, 3, 7, 1, 0, 9, 5, 0, 6, 7
Offset: 0

Views

Author

Jianing Song, Nov 09 2019

Keywords

Comments

Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i is the imaginary unit.
In general, for real s and complex z, let f(s,z) = Sum_{k>=1} z^k/k^s, then:
(a) if s <= 0, then f(s,z) converges to Polylog(s,z) if |z| < 1;
(b) if 0 < s <= 1, then f(s,z) converges to Polylog(s,z) if z != 1;
(c) if s > 1, then f(s,z) converges to Polylog(s,z) if |z| <= 1.
As a result, let z = e^(i*x), then the series Sum_{k>=1} (cos(k*x) + i*sin(k*x))/k^s converges to Polylog(s,e^(i*x)) if and only if s > 1, or 0 < s <= 1 and x != 2*m*Pi.

Examples

			0.65847894846240835431252317365398422201349098573375...
		

Crossrefs

Similar sequences:
A263192 (Sum_{k>=1} cos(k)/sqrt(k) = Re(Polylog(1/2,exp(i))));
A263193 (Sum_{k>=1} sin(k)/sqrt(k) = Im(Polylog(1/2,exp(i))));
this sequence (Sum_{k>=1} cos(k*Pi/6)/k = Re(Polylog(1,exp(i*Pi/6))));
A121225 (Sum_{k>=1} cos(k)/k = Re(Polylog(1,exp(i))));
A329246 (Sum_{k>=1} cos(k*Pi/4)/k = Re(Polylog(1,exp(i*Pi/4))));
A096444 (Sum_{k>=1} sin(k)/k = Im(Polylog(1,exp(i))));
A122143 (Sum_{k>=1} cos(k)/k^2 = Re(Polylog(2,exp(i))));
A096418 (Sum_{k>=1} sin(k)/k^2 = Im(Polylog(2,exp(i)))).

Programs

  • Maple
    Digits := 100: (log(2 + sqrt(3))/2)*10^91:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Nov 09 2019
  • Mathematica
    RealDigits[Log[2 + Sqrt[3]]/2, 10, 100][[1]] (* Amiram Eldar, Dec 05 2021 *)
  • PARI
    default(realprecision, 100); log(2 + sqrt(3))/2

Formula

Equals log(2 + sqrt(3))/2.
Equals -log(2*sin(Pi/12)).
Equals arccoth(sqrt(3)). - Amiram Eldar, Dec 05 2021
From Amiram Eldar, Mar 26 2022: (Start)
Equals arcsinh(1/sqrt(2)).
Equals Sum_{n>=1} arcsinh(1/(sqrt(2^(n+2)+2)+sqrt(2^(n+1)+2))) (Vălean, 2106). (End)
log(2 + sqrt(3))/2 = Sum_{n >= 1} 1/(n*P(n, sqrt(3))*P(n-1, sqrt(3))), where P(n, x) denotes the n-th Legendre polynomial. The first ten terms of the series gives the approximation log(2 + sqrt(3))/2 = 0.658478948(35...) correct to 9 decimal places. - Peter Bala, Mar 16 2024