cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329265 a(n) is the number of solutions of the infinite Diophantine equation Sum_{j>0} j^r*(k_j)^2 = n with k_j integers and r = 3.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 2, 4, 0, 0, 4, 2, 8, 0, 4, 18, 0, 0, 8, 0, 4, 0, 4, 12, 0, 0, 0, 4, 2, 0, 8, 4, 0, 0, 0, 0, 8, 0, 4, 16, 0, 0, 12, 4, 4, 0, 0, 16, 0, 0, 8, 10, 16, 0, 8, 16, 0, 0, 0, 4, 18, 0, 0, 16
Offset: 0

Views

Author

Stefano Spezia, Nov 09 2019

Keywords

Examples

			a(9) = 6 since there are 6 integer solutions to 1^3*k1^2 + 2^3*k2^2 + ... = 9:
k1 = +-3 and k_j = 0 for j > 1;
k1 = -1, k2 = +-1 and k_j = 0 for j > 2;
k1 = 1, k2 = +-1 and k_j = 0 for j > 2.
		

Crossrefs

Cf. A000041, A000122, A320067 (r = 1), A320068, A320078, A320968, A320992, A329264 (r = 2), A329266 (r = 4).

Programs

  • Mathematica
    nmax=85; r=3; CoefficientList[Series[Product[Product[(1-(-1)^n*q^(n*j^r))/(1+(-1)^n*q^(n*j^r)),{n,1,nmax}],{j,1,nmax}],{q,0,nmax}],q]

Formula

a(n) = [q^n] Product_{j>0} Product_{n>0} (1 - (-1)^n*q^(n*j^r)) / (1 + (-1)^n*q^(n*j^r)) with r = 3 (see Proposition 1.1 in Zhou and Sun).