A329266 a(n) is the number of solutions of the infinite Diophantine equation Sum_{j>0} j^r*(k_j)^2 = n with k_j integers and r = 4.
1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 8, 4, 4, 0, 0, 4, 0, 0
Offset: 0
Keywords
Examples
a(25) = 6 since there are 6 integer solutions to 1^4*k1^2 + 2^4*k2^2 + ... = 25: k1 = +-5 and k_j = 0 for j > 1; k1 = -3, k2 = +-1 and k_j = 0 for j > 2; k1 = 3, k2 = +-1 and k_j = 0 for j > 2.
Links
- Nian Hong Zhou, Yalin Sun, Counting the number of solutions to certain infinite Diophantine equations, arXiv:1910.07884 [math.NT], 2019.
Crossrefs
Programs
-
Mathematica
nmax=87;r=4;CoefficientList[Series[Product[Product[(1-(-1)^n*q^(n*j^r))/(1+(-1)^n*q^(n*j^r)),{n,1,nmax}],{j,1,nmax}],{q,0,nmax}],q]
Formula
a(n) = [q^n] Product_{j>0} Product_{n>0} (1 - (-1)^n*q^(n*j^r)) / (1 + (-1)^n*q^(n*j^r)) with r = 4 (see Proposition 1.1 in Zhou and Sun).