cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329281 Decimal expansion of the quantile z_0.95 of the standard normal distribution.

Original entry on oeis.org

1, 6, 4, 4, 8, 5, 3, 6, 2, 6, 9, 5, 1, 4, 7, 2, 7, 1, 4, 8, 6, 3, 8, 4, 8, 9, 0, 7, 9, 9, 1, 6, 3, 2, 1, 3, 6, 0, 8, 3, 1, 9, 5, 7, 4, 4, 2, 7, 5, 3, 2, 2, 0, 7, 1, 7, 6, 9, 6, 7, 2, 0, 9, 4, 4, 0, 4, 1, 0, 6, 3, 5, 1, 9, 9, 4, 4, 6, 7, 4, 1, 7, 6, 6, 4, 8, 7, 8, 4, 8, 5
Offset: 1

Views

Author

Jianing Song, Nov 12 2019

Keywords

Comments

z_p is the number z such that Phi(z) = p, where Phi(x) = Integral_{t=-oo..x} (1/sqrt(2*Pi))*exp(-t^2/2)*dt is the cumulative distribution function of the standard normal distribution. This sequence gives z_0.95 (also called the 95th percentile).
This number can also be denoted as probit(0.95), where probit(p) is the inverse function of Phi(x). See the Wikipedia link below.

Examples

			If X ~ N(0,1), then P(X<=1.6448536269...) = 0.95, P(X<=-1.6448536269...) = 0.05.
		

Crossrefs

Quantiles of the standard normal distribution: A092678 (z_0.75), A329280 (z_0.9), this sequence (z_0.95), A329282 (z_0.99), A329283 (z_0.995), A329284 (z_0.999), A329285 (z_0.9995), A329286 (z_0.9999), A329287 (z_0.99999), A329363 (z_0.999999).

Programs

  • Mathematica
    RealDigits[(x /. FindRoot[10*Erfc[x] == 1, {x, 1, 2}, WorkingPrecision -> 120]) * Sqrt[2]][[1]] (* Amiram Eldar, Aug 23 2024 *)
  • PARI
    default(realprecision, 100); solve(x=0, 5, erfc(x)-2*0.05)*sqrt(2)