A375221 Decimal expansion of 6^((3 + z_0.95)/6), where z_0.95 is the 95% quantile of the standard normal distribution (A329281).
4, 0, 0, 3, 1, 3, 0, 7, 5, 9, 6, 0, 0, 8, 5, 2, 2, 4, 7, 2, 0, 0, 9, 6, 2, 3, 7, 3, 9, 3, 3, 5, 6, 5, 9, 2, 0, 6, 3, 8, 2, 2, 6, 3, 0, 8, 8, 2, 6, 3, 1, 9, 0, 1, 5, 6, 5, 7, 9, 6, 3, 2, 7, 4, 1, 8, 3, 8, 0, 9, 5, 5, 6, 7, 6, 3, 7, 6, 8, 4, 6, 1, 2, 1, 3, 1, 0, 3, 6, 0, 7
Offset: 1
Examples
4.0031307596008522472009623739335659206382263...
References
- Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, Third Edition, Elsevier Academic Press, 2004. Chapter 7, Parameter Estimation, 7.3 Interval Estimates, page 242.
Links
- Junling Wang et al., Fatigue Scatter Factor Analysis of Airplane Structures Based on Zero-failure Data, Journal of Physics Conf. Series 1213 (2019) 022010.
- Wikipedia, Log-normal distribution.
Crossrefs
Cf. A329281.
Programs
-
Mathematica
RealDigits[6^((3 + (x /. FindRoot[10*Erfc[x] == 1, {x, 1, 2}, WorkingPrecision -> 120])*Sqrt[2])/6)][[1]] (* Amiram Eldar, Aug 23 2024 *)
-
PARI
6^((3 + solve(x=1.0, 2.0, erfc(x)- 1/10)*sqrt(2))/6)
Comments