cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329290 Number of ordered triples (i, j, k) of integers such that n = i^2 + 4*j^2 + 4*k^2.

Original entry on oeis.org

1, 2, 0, 0, 6, 8, 0, 0, 12, 10, 0, 0, 8, 8, 0, 0, 6, 16, 0, 0, 24, 16, 0, 0, 24, 10, 0, 0, 0, 24, 0, 0, 12, 16, 0, 0, 30, 8, 0, 0, 24, 32, 0, 0, 24, 24, 0, 0, 8, 18, 0, 0, 24, 24, 0, 0, 48, 16, 0, 0, 0, 24, 0, 0, 6, 32, 0, 0, 48, 32, 0, 0, 36, 16, 0, 0, 24, 32
Offset: 0

Views

Author

Michael Somos, Nov 17 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(5/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A169783.

Examples

			G.f. = 1 + 2*x + 6*x^4 + 8*x^5 + 12*x^8 + 10*x^9 + 8*x^12 + 8*x^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(16), 3/2), 77); A[1] + 2*A[2];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[3, 0, x] EllipticTheta[3, 0, x^4]^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A)^10 / (eta(x + A)^2 * eta(x^4 + A)^6 * eta(x^16 + A)^4), n))};
    

Formula

Euler transform of period 16 sequence [2, -3, 2, 3, 2, -3, 2, -7, 2, -3, 2, 3, 2, -3, 2, -3, ...].
Expansion of phi(x) * phi(x^4)^2 = phi(x^4)^3 + 2*x*phi(x^4)*psi(x^4)^2 in powers of x where phi(), psi() are Ramanujan theta functions.
G.f.: theta_3(q) * theta_3(q^4)^2, where theta_3() is the Jacobi theta function.
a(4*n) = A005875(n). a(4*n + 1) = 2 * A045834(n). a(4*n + 2) = a(4*n + 3) = 0.