cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A329061 Greatest k such that A002805(k) is not divisible by n, or a(n) = 0 if there's no such k.

Original entry on oeis.org

0, 1, 68, 3, 124, 68, 719102, 7, 206, 124, 11130347490407364042652446389727, 68, 2196, 719102, 124, 15, 4912, 206, 16128612858, 124, 719102, 11130347490407364042652446389727, 12166, 68, 624, 2196, 620, 719102, 20171036, 124, 27488495831, 31, 11130347490407364042652446389727
Offset: 1

Views

Author

Jinyuan Wang, Dec 07 2019

Keywords

Comments

There are two cases where a(n) = 0: (a) n divides A002805(k) for all k, which only happens for n = 1; (b) there are infinitely many k such that n does not divide A002805(k), which may happen for some primes p and their multiples.
For k > a(n) > 0, A002805(k) is always divisible by n.
For prime p and k >= p, A002805(k) = (the denominator of s + (Sum_{i=1..floor(k/p)} 1/i)/p) is not divisible by p if and only if p divides A001008(floor(k/p)) = (the numerator of Sum_{i=1..floor(k/p)} 1/i), because the denominator of s = Sum_{1 <= i <= k, i is not divisible by p} 1/i can never be divisible by p.
If k == -1 or 0 (mod p), then p divides A001008(k) iff p^2 divides A001008(floor(k/p)), otherwise p divides A001008(k) iff p divides the numerator of (Sum_{i=floor(k/p)*p+1..k} 1/i) + (Sum_{i=1..floor(k/p)} 1/i)/p, where p is an odd prime and k >= p. (Since Sum_{i=1..p-1} (p-1)!/i = (-1)^((p-1)/2)*((p-1)/2)!*(Sum_{i=1..(p-1)/2} ((p-1)/2)!/i) + ((p-1)/2)!*(Sum_{i=1..(p-1)/2} (-1)^((p-1)/2)*((p-1)/2)!/(-i)) == 0 (mod p), odd prime p divides the numerator of Sum_{1 <= i <= floor(k/p)*p, i is not divisible by p} 1/i.)

Examples

			For p = 3, 3 divides numerator(1+1/2), so 2*3, 2*3 + 1 and 2*3 + 2 are such k that A002805(k) can't be divisible by 3. Similarly, 7*3, 7*3 + 1 and 7*3 + 2 are such k. Mod(A001008(7), 3) > 0 and Mod(numerator(1/22 + (Sum_{i=1..7} 1/i)/3), 3) = 0, hence 3 divides A001008(22), which means 22*3, 22*3 + 1 and 22*3 + 2 are also such k. a(3) = 68 because A001008(k) can never be divisible by 3 for k = 66, 67 and 68.
		

Crossrefs

Formula

If n = Product_{j=1..i} p_j^e_j, p_1 < ... < p_i are primes and a(p_j^e_j) > 0, then a(n) = Max_{j=1..i} a(p_j^e_j).
a(p^e) = p^(e-1)*(a(p)+1) - 1 for prime p and a(p) > 0. Proof: A001008(k)/A002805(k) = (Sum_{1 <= i <= k, i is not divisible by p^e} 1/i) + (Sum_{i=1..floor(k/p^e)} 1/i)/p^e), hence A002805(k) is not divisible by p^e if and only if p divides A001008(floor(k/p^e)). From the comment, we know that (a(p)+1)/p - 1 is the greatest m such that p divides A001008(m). Therefore, a(p^e) = p^e*((a(p)+1)/p-1) + p^e - 1 = p^(e-1)*(a(p)+1) - 1.
a(prime(i)) = (A177734(i)+1)*prime(i) - 1, where prime(i) = A000040(i). - Jinyuan Wang, Feb 06 2020

Extensions

More terms from Jinyuan Wang, Feb 06 2020
Showing 1-1 of 1 results.