cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329324 Number of Lyndon compositions of n whose reverse is not a co-Lyndon composition.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 7, 16, 37, 76, 166, 328, 669, 1326, 2626, 5138, 10104, 19680, 38442, 74822, 145715, 283424, 551721, 1073224
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2019

Keywords

Comments

A Lyndon composition of n is a finite sequence summing to n that is lexicographically strictly less than all of its cyclic rotations. A co-Lyndon composition of n is a finite sequence summing to n that is lexicographically strictly greater than all of its cyclic rotations.

Examples

			The a(6) = 1 through a(9) = 16 compositions:
  (132)  (142)   (143)    (153)
         (1132)  (152)    (162)
                 (1142)   (243)
                 (1232)   (1143)
                 (1322)   (1152)
                 (11132)  (1242)
                 (11312)  (1332)
                          (1422)
                          (11142)
                          (11232)
                          (11322)
                          (11412)
                          (12132)
                          (111132)
                          (111312)
                          (112212)
		

Crossrefs

Lyndon and co-Lyndon compositions are counted by A059966.
Numbers whose reversed binary expansion is Lyndon are A328596.
Numbers whose binary expansion is co-Lyndon are A275692.
Lyndon compositions that are not weakly increasing are A329141.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#1]}]=={q,RotateRight[q,#1]}&,Length[q]-1,1,And];
    colynQ[q_]:=Array[Union[{RotateRight[q,#1],q}]=={RotateRight[q,#1],q}&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],lynQ[#]&&!colynQ[Reverse[#]]&]],{n,15}]

Extensions

a(21)-a(25) from Robert Price, Jun 20 2021