cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329346 a(n) = A322356(A324886(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 7, 1, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 7, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 7, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 19, 1, 1, 1, 1, 13, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 7, 1, 13, 1, 13, 1, 1, 1, 1, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2019

Keywords

Examples

			For n = 128 = 2^7, A108951(128) = A034386(2)^7 = 128. As 128 = 4 * 30 + 1*6 + 1* 2, A276086(128) = 36015 = 7^4 * 5^1 * 3^1, and there are two such primes that both p and p-2 divide n, and p-2 is also prime, namely, 7 and 5, thus a(128) = 7*5 = 35. This is also the first occurrence of composite number in this sequence.
		

Crossrefs

Programs

  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324886(n) = A276086(A108951(n));
    A322356(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(isprime(f[i,1]+2)&&!(n%(f[i,1]+2)), m *= (f[i,1]+2))); (m); };
    A329346(n) = A322356(A324886(n));

Formula

a(n) = A322356(A324886(n)).