A329356 The binary expansion of a(n) is the first n terms of 2 - A000002.
0, 1, 2, 4, 9, 19, 38, 77, 154, 308, 617, 1234, 2468, 4937, 9875, 19750, 39501, 79003, 158006, 316012, 632025, 1264050, 2528101, 5056203, 10112406, 20224813, 40449626, 80899252, 161798505, 323597011, 647194022, 1294388045, 2588776091, 5177552182, 10355104365
Offset: 0
Examples
a(7) = 77 has binary expansion q = {1, 0, 0, 1, 1, 0, 1}, and 2 - q is {1, 2, 2, 1, 1, 2, 1}, which is the first 7 terms of A000002.
Crossrefs
Programs
-
Mathematica
kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]] kol[n_Integer]:=If[n==0,{},Nest[kolagrow,{1},n-1]]; Table[FromDigits[2-kol[n],2],{n,0,30}]
Formula
a(n) = floor((1-c/2)*2^n), where c = A118270 is the Kolakoski constant. - Lorenzo Sauras Altuzarra, Jan 01 2023