cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A296658 Length of the standard Lyndon word factorization of the first n terms of A000002.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 5, 4, 5, 3, 3, 4, 5, 4, 5, 6, 5, 6, 4, 4, 5, 4, 4, 5, 6, 5, 6, 4, 4, 5, 4, 5, 6, 5, 6, 7, 6, 4, 5, 4, 4, 5, 6, 5, 6, 4, 4, 5, 4, 4, 5, 6, 5, 6, 7, 6, 7, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 5, 6, 7, 6
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2017

Keywords

Examples

			The standard Lyndon word factorization of (12211212212211211) is (122)(112122122)(112)(1)(1), so a(17) = 5.
The standard factorizations of initial terms of A000002:
1
12
122
122,1
122,1,1
122,112
122,112,1
122,11212
122,112122
122,112122,1
122,11212212
122,112122122
122,112122122,1
122,112122122,1,1
122,112122122,112
122,112122122,112,1
122,112122122,112,1,1
122,112122122,112,112
122,112122122,1121122
122,112122122,1121122,1
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],LyndonQ[Take[q,#]]&]];
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],Part[q,-2],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]];
    Table[Length[qit[Nest[kolagrow,1,n]]],{n,150}]

A334029 Length of the co-Lyndon factorization of the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 4, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 5, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2020

Keywords

Comments

We define the co-Lyndon product of two or more finite sequences to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (2,3,1) with (2,1,3) is (2,1,2,3,1,3), the product of (2,2,1) with (2,1,3) is (2,1,2,2,1,3), and the product of (1,2,2) with (2,1,2,1) is (1,2,1,2,1,2,2). A co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product. Equivalently, a co-Lyndon word is a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into co-Lyndon words, and if these factors are arranged in a certain order, their concatenation is equal to their co-Lyndon product. For example, (1,0,0,1) has co-Lyndon factorization {(1),(1,0,0)}.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 441st composition in standard order is (1,2,1,1,3,1), with co-Lyndon factorization {(1),(3,1),(2,1,1)}, so a(441) = 3.
		

Crossrefs

The dual version is A329312.
The version for binary expansion is (also) A329312.
The version for reversed binary expansion is A329326.
Binary Lyndon/co-Lyndon words are counted by A001037.
Necklaces covering an initial interval are A019536.
Lyndon/co-Lyndon compositions are counted by A059966
Length of Lyndon factorization of binomial expansion is A211100.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of reversed binary expansion is A329313.
A list of all binary co-Lyndon words is A329318.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Reversed necklaces are A333943.
- Co-necklaces are A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#1],q}]=={RotateRight[q,#1],q}&,Length[q]-1,1,And];
    colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],colynQ[Take[q,#1]]&]]]]
    Table[Length[colynfac[stc[n]]],{n,0,100}]

A332273 Sizes of maximal weakly decreasing subsequences of A000002.

Original entry on oeis.org

1, 4, 2, 3, 4, 3, 3, 3, 2, 4, 3, 2, 3, 4, 2, 3, 3, 3, 3, 4, 2, 3, 4, 3, 2, 3, 3, 3, 4, 2, 3, 4, 3, 3, 3, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 3, 3, 2, 4, 3, 2, 3, 3, 3, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2020

Keywords

Examples

			The weakly decreasing subsequences begin: (1), (2,2,1,1), (2,1), (2,2,1), (2,2,1,1), (2,1,1), (2,2,1), (2,1,1), (2,1), (2,2,1,1), (2,1,1), (2,1), (2,2,1), (2,2,1,1).
		

Crossrefs

The number of runs in the first n terms of A000002 is A156253.
The weakly increasing version is A332875.

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=Nest[kolagrow,{1},n-1];
    Length/@Split[kol[40],#1>=#2&]

Formula

a(n) = A000002(2*n - 2) + A000002(2*n - 1) for n > 1.

A332875 Sizes of maximal weakly increasing subsequences of A000002.

Original entry on oeis.org

3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 4, 3, 3, 3, 2, 4, 3, 2, 3, 4, 3, 3, 3, 2, 3, 4, 2, 3, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 3, 3, 3, 4, 2, 3, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2020

Keywords

Examples

			The weakly increasing subsequences begin: (1,2,2), (1,1,2), (1,2,2), (1,2,2), (1,1,2), (1,1,2,2), (1,2), (1,1,2), (1,2,2), (1,1,2), (1,1,2), (1,2,2), (1,2,2).
		

Crossrefs

The number of runs in the first n terms of A000002 is A156253.
The weakly decreasing version is A332273.

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=Nest[kolagrow,{1},n-1];
    Length/@Split[kol[40],#1<=#2&]

Formula

a(n) = A000002(2*n - 1) + A000002(2*n).

A329355 The binary expansion of a(n) is the second through n-th terms of A000002 - 1.

Original entry on oeis.org

0, 1, 3, 6, 12, 25, 50, 101, 203, 406, 813, 1627, 3254, 6508, 13017, 26034, 52068, 104137, 208275, 416550, 833101, 1666202, 3332404, 6664809, 13329618, 26659237, 53318475, 106636950, 213273900, 426547801, 853095602, 1706191204, 3412382409, 6824764818
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2019

Keywords

Examples

			a(11) = 813 has binary expansion q = {1, 1, 0, 0, 1, 0, 1, 1, 0, 1}, and q + 1 is {2, 2, 1, 1, 2, 1, 2, 2, 1, 2}, which is the second through 11th terms of A000002.
		

Crossrefs

Replacing "A000002 - 1" with "2 - A000002" gives A329356.
Partial sums of A000002 are A054353.
Initial subsequences of A000002 are A329360.

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=If[n==0,{},Nest[kolagrow,{1},n-1]];
    Table[FromDigits[kol[n]-1,2],{n,30}]

A329356 The binary expansion of a(n) is the first n terms of 2 - A000002.

Original entry on oeis.org

0, 1, 2, 4, 9, 19, 38, 77, 154, 308, 617, 1234, 2468, 4937, 9875, 19750, 39501, 79003, 158006, 316012, 632025, 1264050, 2528101, 5056203, 10112406, 20224813, 40449626, 80899252, 161798505, 323597011, 647194022, 1294388045, 2588776091, 5177552182, 10355104365
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2019

Keywords

Examples

			a(7) = 77 has binary expansion q = {1, 0, 0, 1, 1, 0, 1}, and 2 - q is {1, 2, 2, 1, 1, 2, 1}, which is the first 7 terms of A000002.
		

Crossrefs

Replacing "2 - A000002" with "A000002 - 1" gives A329355.
Initial subsequences of A000002 are A329360.

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=If[n==0,{},Nest[kolagrow,{1},n-1]];
    Table[FromDigits[2-kol[n],2],{n,0,30}]

Formula

a(n) = floor((1-c/2)*2^n), where c = A118270 is the Kolakoski constant. - Lorenzo Sauras Altuzarra, Jan 01 2023

A329360 The decimal expansion of a(n) is the first n terms of A000002.

Original entry on oeis.org

0, 1, 12, 122, 1221, 12211, 122112, 1221121, 12211212, 122112122, 1221121221, 12211212212, 122112122122, 1221121221221, 12211212212211, 122112122122112, 1221121221221121, 12211212212211211, 122112122122112112, 1221121221221121122, 12211212212211211221
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2019

Keywords

Crossrefs

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=If[n==0,{},Nest[kolagrow,{1},n-1]];
    Table[FromDigits[kol[n]],{n,0,30}]

A329361 a(n) = Sum_{i = 1..n} 2^(n - i) * A000002(i).

Original entry on oeis.org

0, 1, 4, 10, 21, 43, 88, 177, 356, 714, 1429, 2860, 5722, 11445, 22891, 45784, 91569, 183139, 366280, 732562, 1465125, 2930252, 5860505, 11721011, 23442024, 46884049, 93768100, 187536202, 375072405, 750144811, 1500289624, 3000579249, 6001158499, 12002317000
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2019

Keywords

Examples

			The first 5 terms of A000002 are {1, 2, 2, 1, 1}, so a(5) = 2^4 * 1 + 2^3 * 2 + 2^2 * 2 + 2^1 * 1 + 2^0 * 1 = 43.
		

Crossrefs

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=If[n==0,{},Nest[kolagrow,{1},n-1]];
    Table[FromDigits[kol[n],2],{n,0,30}]

Formula

a(n + 1) = A000002(n) + 2 a(n).

A333229 First sums of the Kolakoski sequence A000002.

Original entry on oeis.org

3, 4, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 2, 3, 3, 2, 3, 4, 3, 3, 3, 2, 3, 3, 3, 4, 3, 2, 3, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 2, 3, 3, 3, 4, 3, 3, 3, 2, 3, 3, 2, 3, 4, 3, 3, 4, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 2, 3, 3, 2, 3, 3, 3, 4, 3, 3, 3, 2, 3, 4, 3, 3, 4, 3, 2, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Crossrefs

Positions of 3's are A054353.
Positions of 2's are A074262.
Positions of 4's are A074263.
The number of runs in the first n terms of A000002 is A156253(n).
Even-indexed terms are A332273 (without the first term).
Odd-indexed terms are A332875.

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=Nest[kolagrow,{1},n-1];
    Table[kol[n][[-1]]+kol[n+1][[-1]],{n,30}]

Formula

a(n) = A000002(n) + A000002(n + 1).
Showing 1-9 of 9 results.