cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329376 Multiplicative with a(p^e) = p when e = 2, otherwise a(p^e) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2019

Keywords

Comments

Product of those distinct prime factors that occur exactly twice in the prime factorization of n, that is, whose exponent is 2.

Crossrefs

Row 3 of array A106177, and the square roots of its row 9.

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, p, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 11 2023 *)
  • PARI
    A329376(n) = { my(f = factor(n)); prod(i=1,#f~,f[i, 1]^(2 == f[i, 2])); };
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X^2 + X + X^2/(-1 + 1/X)))[n], ", ")) \\ Vaclav Kotesovec, May 31 2024

Formula

Multiplicative with a(p^e) = p when e = 2, otherwise a(p^e) = 1.
a(n) <= A000196(n).
From Amiram Eldar, Feb 11 2023: (Start)
a(n) <= sqrt(n), with equality if and only if n is in A062503.
a(n) = 1 if and only if n is in A337050. (End)
From Vaclav Kotesovec, May 31 2024: (Start)
Dirichlet g.f.: zeta(2*s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(5*s-1) + 1/p^(5*s-2) + 1/p^(4*s-1) - 1/p^(4*s-2) - 1/p^(3*s-1) + 1/p^(3*s) - 1/p^(2*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(5*s-1) + 1/p^(5*s-2) + 1/p^(4*s-1) - 1/p^(4*s-2) - 1/p^(3*s-1) + 1/p^(3*s) - 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.33718787379158997196169281615215824494915412775816393888028828465611936...,
f'(1) = f(1) * Sum_{p prime} (9*p^2 - 12*p + 5) * log(p) / (p^4 - 3*p^2 + 3*p - 1) = f(1) * 3.78385641685861932254178374972226733621783278751462026270346293...
and gamma is the Euler-Mascheroni constant A001620. (End)