cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A329395 Numbers whose binary expansion without the most significant (first) digit has Lyndon and co-Lyndon factorizations of equal lengths.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 10, 13, 15, 16, 22, 25, 31, 32, 36, 42, 46, 49, 53, 59, 63, 64, 76, 82, 94, 97, 109, 115, 127, 128, 136, 148, 156, 162, 166, 169, 170, 172, 181, 182, 190, 193, 201, 202, 211, 213, 214, 217, 221, 227, 235, 247, 255, 256, 280, 292, 306, 308
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2019

Keywords

Comments

We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product. Equivalently, a Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into Lyndon words, and if these factors are arranged in lexicographically decreasing order, their concatenation is equal to their Lyndon product. For example, (1001) has sorted Lyndon factorization (001)(1).
Similarly, the co-Lyndon product is the lexicographically minimal sequence obtainable by shuffling the sequences together, and a co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product, or, equivalently, a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. For example, (1001) has sorted co-Lyndon factorization (1)(100).
Conjecture: also numbers k such that the k-th composition in standard order (A066099) is a palindrome, cf. A025065, A242414, A317085, A317086, A317087, A335373. - Gus Wiseman, Jun 06 2020

Examples

			The sequence of terms together with their trimmed binary expansions and their co-Lyndon and Lyndon factorizations begins:
   1:      () =               0 = 0
   2:     (0) =             (0) = (0)
   3:     (1) =             (1) = (1)
   4:    (00) =          (0)(0) = (0)(0)
   7:    (11) =          (1)(1) = (1)(1)
   8:   (000) =       (0)(0)(0) = (0)(0)(0)
  10:   (010) =         (0)(10) = (01)(0)
  13:   (101) =         (10)(1) = (1)(01)
  15:   (111) =       (1)(1)(1) = (1)(1)(1)
  16:  (0000) =    (0)(0)(0)(0) = (0)(0)(0)(0)
  22:  (0110) =        (0)(110) = (011)(0)
  25:  (1001) =        (100)(1) = (1)(001)
  31:  (1111) =    (1)(1)(1)(1) = (1)(1)(1)(1)
  32: (00000) = (0)(0)(0)(0)(0) = (0)(0)(0)(0)(0)
  36: (00100) =     (0)(0)(100) = (001)(0)(0)
  42: (01010) =     (0)(10)(10) = (01)(01)(0)
  46: (01110) =       (0)(1110) = (0111)(0)
  49: (10001) =       (1000)(1) = (1)(0001)
  53: (10101) =     (10)(10)(1) = (1)(01)(01)
  59: (11011) =     (110)(1)(1) = (1)(1)(011)
  63: (11111) = (1)(1)(1)(1)(1) = (1)(1)(1)(1)(1)
		

Crossrefs

Lyndon and co-Lyndon compositions are (both) counted by A059966.
Numbers whose reversed binary expansion is Lyndon are A328596.
Numbers whose binary expansion is co-Lyndon are A275692.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q, RotateRight[q, #]}]=={q, RotateRight[q, #]}&, Length[q]-1, 1, And];
    lynfac[q_]:=If[Length[q]==0, {}, Function[i, Prepend[lynfac[Drop[q, i]], Take[q, i]]][Last[Select[Range[Length[q]], lynQ[Take[q, #]]&]]]];
    colynQ[q_]:=Array[Union[{RotateRight[q, #], q}]=={RotateRight[q, #], q}&, Length[q]-1, 1, And];
    colynfac[q_]:=If[Length[q]==0, {}, Function[i, Prepend[colynfac[Drop[q, i]], Take[q, i]]]@Last[Select[Range[Length[q]], colynQ[Take[q, #]]&]]];
    Select[Range[100],Length[lynfac[Rest[IntegerDigits[#,2]]]]==Length[colynfac[Rest[IntegerDigits[#,2]]]]&]

A334029 Length of the co-Lyndon factorization of the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 4, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 5, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2020

Keywords

Comments

We define the co-Lyndon product of two or more finite sequences to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (2,3,1) with (2,1,3) is (2,1,2,3,1,3), the product of (2,2,1) with (2,1,3) is (2,1,2,2,1,3), and the product of (1,2,2) with (2,1,2,1) is (1,2,1,2,1,2,2). A co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product. Equivalently, a co-Lyndon word is a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into co-Lyndon words, and if these factors are arranged in a certain order, their concatenation is equal to their co-Lyndon product. For example, (1,0,0,1) has co-Lyndon factorization {(1),(1,0,0)}.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 441st composition in standard order is (1,2,1,1,3,1), with co-Lyndon factorization {(1),(3,1),(2,1,1)}, so a(441) = 3.
		

Crossrefs

The dual version is A329312.
The version for binary expansion is (also) A329312.
The version for reversed binary expansion is A329326.
Binary Lyndon/co-Lyndon words are counted by A001037.
Necklaces covering an initial interval are A019536.
Lyndon/co-Lyndon compositions are counted by A059966
Length of Lyndon factorization of binomial expansion is A211100.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of reversed binary expansion is A329313.
A list of all binary co-Lyndon words is A329318.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Reversed necklaces are A333943.
- Co-necklaces are A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#1],q}]=={RotateRight[q,#1],q}&,Length[q]-1,1,And];
    colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],colynQ[Take[q,#1]]&]]]]
    Table[Length[colynfac[stc[n]]],{n,0,100}]

A329327 Numbers whose binary expansion has Lyndon factorization of length 2 (the minimum for n > 1).

Original entry on oeis.org

2, 3, 5, 9, 11, 17, 19, 23, 33, 35, 37, 39, 43, 47, 65, 67, 69, 71, 75, 77, 79, 87, 95, 129, 131, 133, 135, 137, 139, 141, 143, 147, 149, 151, 155, 157, 159, 171, 175, 183, 191, 257, 259, 261, 263, 265, 267, 269, 271, 275, 277, 279, 281, 283, 285, 287, 293
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2019

Keywords

Comments

First differs from A329357 in having 77 and lacking 83.
Also numbers whose decapitated binary expansion is a Lyndon word (see also A329401).

Examples

			The binary expansion of each term together with its Lyndon factorization begins:
   2:      (10) = (1)(0)
   3:      (11) = (1)(1)
   5:     (101) = (1)(01)
   9:    (1001) = (1)(001)
  11:    (1011) = (1)(011)
  17:   (10001) = (1)(0001)
  19:   (10011) = (1)(0011)
  23:   (10111) = (1)(0111)
  33:  (100001) = (1)(00001)
  35:  (100011) = (1)(00011)
  37:  (100101) = (1)(00101)
  39:  (100111) = (1)(00111)
  43:  (101011) = (1)(01011)
  47:  (101111) = (1)(01111)
  65: (1000001) = (1)(000001)
  67: (1000011) = (1)(000011)
  69: (1000101) = (1)(000101)
  71: (1000111) = (1)(000111)
  75: (1001011) = (1)(001011)
  77: (1001101) = (1)(001101)
		

Crossrefs

Positions of 2's in A211100.
Positions of rows of length 2 in A329314.
The "co-" and reversed version is A329357.
Binary Lyndon words are counted by A001037 and ranked by A102659.
Length of the co-Lyndon factorization of the binary expansion is A329312.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
    lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#1]]&]]]];
    Select[Range[100],Length[lynfac[IntegerDigits[#,2]]]==2&]

Formula

a(n) = A339608(n) + 1. - Harald Korneliussen, Mar 12 2020

A329400 Length of the co-Lyndon factorization of the binary expansion of n with the most significant (first) digit removed.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 3, 3, 2, 3, 1, 2, 1, 3, 4, 4, 3, 4, 2, 3, 2, 4, 1, 2, 2, 3, 1, 2, 1, 4, 5, 5, 4, 5, 3, 4, 3, 5, 2, 3, 3, 4, 2, 3, 2, 5, 1, 2, 2, 3, 1, 3, 2, 4, 1, 2, 1, 3, 1, 2, 1, 5, 6, 6, 5, 6, 4, 5, 4, 6, 3, 4, 4, 5, 3, 4, 3, 6, 2, 3, 3, 4, 2, 4, 3, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2019

Keywords

Comments

The co-Lyndon product of two or more finite sequences is defined to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (231) and (213) is (212313), the product of (221) and (213) is (212213), and the product of (122) and (2121) is (1212122). A co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product. Equivalently, a co-Lyndon word is a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into co-Lyndon words, and if these factors are arranged in a certain order, their concatenation is equal to their co-Lyndon product. For example, (1001) has sorted co-Lyndon factorization (1)(100).

Examples

			Decapitated binary expansions of 1..20 together with their co-Lyndon factorizations:
   1:     () =
   2:    (0) = (0)
   3:    (1) = (1)
   4:   (00) = (0)(0)
   5:   (01) = (0)(1)
   6:   (10) = (10)
   7:   (11) = (1)(1)
   8:  (000) = (0)(0)(0)
   9:  (001) = (0)(0)(1)
  10:  (010) = (0)(10)
  11:  (011) = (0)(1)(1)
  12:  (100) = (100)
  13:  (101) = (10)(1)
  14:  (110) = (110)
  15:  (111) = (1)(1)(1)
  16: (0000) = (0)(0)(0)(0)
  17: (0001) = (0)(0)(0)(1)
  18: (0010) = (0)(0)(10)
  19: (0011) = (0)(0)(1)(1)
  20: (0100) = (0)(100)
		

Crossrefs

The non-"co" version is A211097.
The version involving all digits is A329312.
Lyndon and co-Lyndon compositions are (both) counted by A059966.
Numbers whose reversed binary expansion is Lyndon are A328596.
Numbers whose binary expansion is co-Lyndon are A275692.
Numbers whose decapitated binary expansion is co-Lyndon are A329401.

Programs

  • Mathematica
    colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And];
    colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]]@Last[Select[Range[Length[q]],colynQ[Take[q,#]]&]]];
    Table[If[n==0,0,Length[colynfac[Rest[IntegerDigits[n,2]]]]],{n,30}]
Showing 1-4 of 4 results.