cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A329452 There are exactly two primes in {a(n+i) + a(n+j), 0 <= i < j <= 3} for any n: lexicographically earliest such sequence of distinct nonnegative integers.

Original entry on oeis.org

0, 1, 2, 8, 4, 5, 6, 3, 7, 11, 10, 9, 12, 13, 28, 15, 17, 16, 20, 14, 21, 22, 19, 23, 25, 24, 29, 30, 26, 18, 35, 31, 32, 27, 34, 36, 33, 38, 37, 40, 63, 39, 41, 44, 42, 45, 47, 50, 51, 43, 52, 49, 46, 48, 53, 54, 57, 55, 56, 58, 69, 62, 59, 65, 66, 61, 60, 67, 64, 68, 70, 81, 72, 76, 73, 75, 71
Offset: 0

Views

Author

M. F. Hasler, Nov 15 2019

Keywords

Comments

That is, there are exactly two primes among the 6 pairwise sums of any four consecutive terms.
Conjectured to be a permutation of the nonnegative numbers.
a(100) = 97, a(1000) = 1001, a(10^4) = 9997, a(10^5) = 10^5, a(10^6) = 999984 and all numbers below 999963 have appeared at that point.
See the wiki page for considerations about existence and surjectivity of the sequence and variants thereof.

Examples

			We start with a(0) = 0, a(1) = 1, a(2) = 2, the smallest possibilities which do not lead to a contradiction.
Now there are already 2 primes, 0 + 2 and 1 + 2, among the pairwise sums, so the next term must not generate any further prime. Given 0 and 1, primes and (primes - 1) are excluded, and a(3) = 8 is the smallest possible choice.
Now there is only one prime, 1 + 2 = 3, among the pairwise sums using {1, 2, 8}; the next term must produce exactly one additional prime as sum with these. We see that 3 is not possible (2 + 3 = 5 and 8 + 3 = 11), but a(4) = 4 is possible.
Now using {2, 8, 4} we have no prime as a pairwise sum, so the next term must produce two primes among the sums with these terms. Again, 3 would give three primes, but 5 yields exactly two primes, 2 + 5 = 7 and 8 + 5 = 13.
		

Crossrefs

Cf. A329412 (analog for positive integers), A329453 (2 primes in a(n+i)+a(n+j), i < j < 5).
Cf. A329333 (one odd prime among a(n+i)+a(n+j), 0 <= i < j < 3), A329450 (no prime in a(n+i)+a(n+j), i < j < 3).

Programs

  • PARI
    A329452(n,show=0,o=0,p=[],U,u=o)={for(n=o,n-1, show&&print1(o","); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(2<#p,p[^1],p),o); my(c=2-sum(i=2,#p,sum(j=1,i-1,isprime(p[i]+p[j])))); if(#p<3, o=u;next); for(k=u,oo, bittest(U,k-u) || sum(i=1,#p,isprime(p[i]+k))!=c || [o=k, break]));print([u]);o} \\ Optional args: show=1: print a(o..n-1); o=1: use indices & terms >= 1, i.e., compute A329412. See the wiki page for more general code returning a vector: S(n,2,4) = a(0..n-1).

Extensions

Edited (deleted comments now found on the wiki) by M. F. Hasler, Nov 24 2019

A329411 Among the pairwise sums of any three consecutive terms there are exactly two prime sums: lexicographically earliest such sequence of distinct positive numbers.

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 5, 8, 9, 10, 13, 16, 15, 14, 17, 12, 11, 18, 19, 22, 21, 20, 23, 24, 29, 30, 31, 28, 25, 33, 34, 26, 27, 32, 35, 36, 37, 42, 41, 38, 45, 44, 39, 40, 43, 46, 51, 50, 47, 53, 54, 48, 49, 52, 55, 57, 82, 56, 75, 62, 64, 87, 63, 76, 61, 66, 65, 71, 86, 60, 77, 67, 72, 59, 68, 69, 58, 70
Offset: 1

Views

Author

Eric Angelini and Jean-Marc Falcoz, Nov 14 2019

Keywords

Comments

About existence of this (infinite) sequence: If it is computed in greedy manner, this means that for given n we are given P(n) := {a(n-1), a(n-2)} and have to find a(n) such that we have exactly 1 or 2 primes in a(n) + P(n) depending on whether a(n-1) + a(n-2) is prime or not. It is easy to prove that this is always possible in the first case (1 prime required). In the second case, we must find two larger primes at given distance |a(n-1) - a(n-2)|, necessarily even, since a(n-3) + P(n) contains two primes. To have this infinitely many times, the twin prime conjecture or a variant thereof must hold. However, the sequence need not be computable in greedy manner! That is, if ever for given P(n) (with composite sum) no a(n) would exist such that a(n) + P(n) contains 2 primes, this simply means that the considered value of a(n-1) was incorrect, and the next larger choice has to be made. Given this freedom, there is no doubt about well-definedness of this sequence up to infinity. - M. F. Hasler, Nov 14 2019, edited Nov 16 2019
Could be extended to a(0) = 0 to yield a sequence of nonnegative integers with the same property, including lexicographic minimality, which is a permutation of the nonnegative integers iff this sequence is a permutation of the positive integers.
This is the first known example where the restriction of S(N,M;0) to [1..oo) gives S(N,M;1), where S(N,M;o) is the lexicographically smallest sequence with a(o)=o, N primes among pairwise sums of M consecutive terms, and no duplicate terms: For example, S(0,3;1) = A329405 is not A329450\{0}, S(2,4;1) = A329412 is not A329452\{0}, etc. The second such example is S(4,4;o) = A329449. - M. F. Hasler, Nov 16 2019
Differs from A055265 from a(30) = 33 on. See the wiki page for further considerations and variants. - M. F. Hasler, Nov 24 2019

Examples

			a(1) = 1 is the smallest possible choice; there's no restriction on the first term.
a(2) = 2 as 2 is the smallest available integer not leading to a contradiction. Note that as 1 + 2 = 3 we already have one prime sum (out of the required two) with the pair {1, 2}.
a(3) = 3 as 3 is the smallest available integer not leading to a contradiction. Since 2 + 3 = 5 we now have our two prime sums with the triplet {1, 2, 3}.
a(4) = 4 as 4 is the smallest available integer not leading to a contradiction. Since 3 + 4 = 7 we now have our two prime sums with the triplet {2, 3, 4}: they are 2 + 3 = 5 and 3 + 4 = 7.
a(5) = 7 because 5 or 6 would lead to a contradiction: indeed, both the triplets {3, 4, 5} and {3, 4, 6} will produce only one prime sum (instead of two). With a(5) = 7 we have the triplet {3, 4, 7} and the two prime sums we were looking for: 3 + 4 = 7 and 4 + 7 = 11.
And so on.
		

Crossrefs

Cf. A055265 (sum of two consecutive terms is always prime: differs from a(30) on).
Cf. A329412 .. A329416 (exactly 2 prime sums using 4, ..., 10 consecutive terms).
Cf. A329333, A329406 .. A329410 (exactly 1 prime sum using 3, 4, ..., 10 consecutive terms).
Cf. A055266 (no prime sum among 2 consecutive terms), A329405 (no prime among the pairwise sums of 3 consecutive terms).
See also "nonnegative" variants: A253074, A329450 (0 primes using 2 resp. 3 terms), A128280 (1 prime from 2 terms), A329452, A329453 (2 primes from 4 resp. 5 terms), A329454, A329455 (3 primes from 4 resp. 5 terms), A329449, A329456 (4 primes from 4 resp. 5 terms). See the Wiki page for more.

Programs

  • Mathematica
    a[1]=1;a[2]=2;a[n_]:=a[n]=(k=1;While[Length@Select[Plus@@@Subsets[{a[n-1],a[n-2],++k},{2}],PrimeQ]!=2||MemberQ[Array[a,n-1],k]];k);Array[a,100] (* Giorgos Kalogeropoulos, May 09 2021 *)
  • PARI
    A329411(n,show=0,o=1,N=2,M=2,p=[],U,u=o)={for(n=o,n-1, show>0&& print1(o", "); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); for(k=u,oo, bittest(U,k-u)|| min(c-#[0|p<-p, isprime(p+k)], #p>=M) ||[o=k,break]));show&&print([u]);o} \\ Optional args: show=1: print a(o..n-1), show=-1: append a(o..n-1) to the (global) list L, in both cases print [least unused number] at the end; o=0: start with a(o)=o; N, M: find N primes using M+1 consecutive terms. - M. F. Hasler, Nov 16 2019

A329456 For any n >= 0, exactly four sums a(n+i) + a(n+j) are prime, for 0 <= i < j <= 4: lexicographically earliest such sequence of distinct nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 24, 4, 5, 7, 8, 6, 9, 10, 11, 13, 18, 12, 16, 19, 29, 25, 42, 14, 15, 17, 20, 21, 22, 23, 26, 38, 45, 27, 28, 33, 40, 32, 31, 39, 30, 41, 48, 49, 36, 35, 34, 37, 43, 66, 47, 50, 46, 51, 52, 53, 55, 54, 44, 56, 83, 63, 59, 68, 64, 67, 72, 85, 57, 70, 79, 78, 58, 60, 61, 121, 76, 71, 90, 73
Offset: 0

Views

Author

M. F. Hasler, based on an idea from Eric Angelini, Nov 15 2019

Keywords

Comments

That is, there are exactly four primes (counted with multiplicity) among the 10 pairwise sums of any five consecutive terms. (It is possible to have 4 primes among the pairwise sums of any 4 consecutive elements, see A329449.)
This map is defined with offset 0 so as to have a permutation of the nonnegative integers in case each of these eventually appears, which is not yet proved (cf. below). The restriction to positive indices would then be a permutation of the positive integers with the same property, but not the lexicographically earliest such, which starts (1, 2, 3, 4, 23, 8, 5, 6, 10, 7, 9, 11, 12, ...).
Concerning the existence of the sequence with infinite length: If the sequence is to be computed in a greedy manner, this means that for given P(n) := {a(n-1), a(n-2), a(n-3), a(n-4)} and thus N(n) := #{ primes x + y with x, y in P(n), x < y} in {0, ..., 4}, we have to find a(n) such that we have exactly 4 - N(n) primes in a(n) + N(n). It is easy to prove that this is always possible when 4 - N(n) = 0 or 1. Otherwise, similar to A329452, ..., A329455, we see that P(n) is an "admissible constellation" in the sense that a(n-5) + P(n) already gave the number of primes required now. So a (weaker) variant of the k-tuple conjecture ensures we can find this a(n). But the sequence need not be computable in greedy manner! That is, if ever for given P(n) no convenient a(n) would exist, this just means that the considered value of a(n-1) (and possibly a(n-2)) was incorrect, and the next larger choice has to be made. Given this freedom, there is no doubt that this sequence is well defined up to infinity.
Concerning surjectivity: If a number m would never appear, this means that m + P(n) will never have the required number of 4 - N(n) primes for all n with a(n) > m, in spite of having found for each of these n at least two other solutions, a(n-4) + P(n) and a(n) + P(n) which both gave 4 - N(n) primes. This appears extremely unlikely and thus as strong evidence in favor of surjectivity.
See examples for further computational evidence.

Examples

			We start with a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3, the smallest possibilities which do not lead to a contradiction. Indeed, the four sums 0 + 2, 0 + 3, 1 + 2 and 2 + 3 are prime.
Now the next term must not give an additional prime when added to any of {0, 1, 2, 3}. We find that a(4) = 24 is the smallest possible choice.
Then there are 2 primes (1+2, 2+3) among the pairwise sums using {1, 2, 3, 24}, so the next term must produce two more prime sums. We find that a(5) = 4 is correct, with 1+4 and 3+4.
a(10^5) = 99948.
a(10^6) = 999923 and all numbers below 999904 occurred by then.
		

Crossrefs

Other sequences with N primes among pairwise sums of M consecutive terms, starting with a(o) = o, sorted by decreasing N: A329581 (N=11, M=8, o=0), A329580 (N=10, M=8, o=0), A329579 (N=9, M=7, o=0), A329577 (N=7, M=7, o=0), A329566 (N=6, M=6, o=0), A329449 (N=4, M=4, o=0), this A329456 (N=4, M=5, o=0), A329454 (3, 4, 0), A329455 (3, 5, 0), A329411 (2, 3, o=1 and 0), A329452 (2, 4, 0), A329412 (2, 4, 1), A329453 (2, 5, 0), A329413 (2, 5, 1), A329333 (N=1, M=3, o=0 and 1), A329450 (0, 3, 0), A329405 (0, 3, 1).

Programs

  • PARI
    A329455(n, show=0, o=0, N=4, M=4, p=[], U, u=o)={for(n=o, n-1, show>0&& print1(o", "); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#p
    				
Showing 1-3 of 3 results.