A329449 For any n >= 0, exactly four sums a(n+i) + a(n+j) are prime, for 0 <= i < j <= 3: lexicographically earliest such sequence of distinct nonnegative integers.
0, 1, 2, 3, 4, 9, 8, 15, 14, 5, 26, 17, 6, 11, 12, 7, 30, 29, 24, 13, 18, 19, 10, 43, 28, 31, 16, 25, 22, 21, 46, 37, 52, 27, 34, 45, 44, 39, 58, 69, 20, 51, 32, 41, 38, 35, 48, 23, 36, 53, 50, 47, 54, 59, 42, 55, 72, 65, 84, 67, 114, 79, 60, 49, 78, 71, 102, 61, 66, 91, 40, 73, 76, 33, 64, 63, 68
Offset: 0
Keywords
Examples
We start with a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3, the smallest possibilities which do not lead to a contradiction. Indeed, the four sums 0 + 2, 0 + 3, 1 + 2 and 2 + 3 are prime. Now we have 2 prime sums using {1, 2, 3}, so the next term must give two more prime when added to these. We find that a(4) = 4 is the smallest possible choice, with 1 + 4 = 5 and 3 + 4 = 7. Then there are again 2 primes among the pairwise sums using {2, 3, 4}, so the next term must again produce two more prime sums. We find that a(5) = 9 is the smallest possibility, with 2 + 9 = 11 and 4 + 9 = 13. a(10^4) = 9834 and all numbers up to 9834 occurred by then. a(10^5) = 99840 and all numbers below 99777 occurred by then. a(10^6) = 1000144 and all numbers below 999402 occurred by then.
Links
- Eric Angelini, Prime sums from neighbouring terms, personal blog "Cinquante signes" (and post to the SeqFan list), Nov. 11, 2019.
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of html file, with permission]
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of pdf file, with permission]
- M. F. Hasler, Prime sums from neighboring terms, OEIS Wiki, Nov. 23, 2019.
Crossrefs
Other sequences with N primes among pairwise sums of M consecutive terms, starting with a(o) = o, sorted by decreasing N and lowest possible M: A329581 (N=11, M=8, o=0), A329580 (N=10, M=8, o=0), A329569 (N=9, M=6, o=0), A329568 (N=9, M=6, o=1), A329425 (N=6, M=5, o=0), A329449 (N=4, M=4, o=0), A329411 (N=2, M=3, o=0 or 1), A128280 (N=1, M=2, o=0), A055265 (N=1, M=2, o=1), A055266 (N=0, M=2; o=1), A253074 (N=0, M=2; o=0).
Programs
-
PARI
A329449(n, show=0, o=0, N=4, M=3, p=[], U, u=o)={for(n=o, n-1, if(show>0, print1(o", "), show<0, listput(L,o)); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); for(k=u, oo, bittest(U, k-u) || min(c-#[0|p<-p, isprime(p+k)], #p>=M) || [o=k, break]));show&&print([u]); o} \\ Optional args: show=1: print a(o..n-1), show=-1: append a(o..n-1) to the global list L, in both cases print [least unused number] at the end; o=1: start with a(1)=1; N, M: get N primes using M+1 consecutive terms.
Comments