A329429 Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
1, 1, 1, 2, 2, 1, 5, 8, 8, 4, 1, 26, 80, 144, 168, 138, 80, 32, 8, 1, 677, 4160, 13888, 31776, 54792, 74624, 82432, 74944, 56472, 35296, 18208, 7664, 2580, 672, 128, 16, 1, 458330, 5632640, 36109952, 158572864, 531441232, 1439520512, 3264101376, 6342205824
Offset: 0
Examples
Rows 0..4: 1; 1, 1; 2, 2, 1; 5, 8, 8, 4, 1; 26, 80, 144, 168, 138, 80, 32, 8, 1. Rows 0..4, the polynomials u(n,x): 1, 1 + x^2, 2 + 2 x^2 + x^4, 5 + 8 x^2 + 8 x^4 + 4 x^6 + x^8, 26 + 80 x^2 + 144 x^4 + 168 x^6 + 138 x^8 + 80 x^10 + 32 x^12 + 8 x^14 + x^16.
References
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
Programs
Formula
p(n,0) = (1, 1, 2, 5, 26, 677, 458330, ...)
p(n,1) = (1, 2, 5, 26, 677, 458330, ...)
p(n,2) = (2, 5, 26, 677, 458330, ...)
p(n,5) = (5, 26, 677, 458330, ...)
p(n,26) = (26, 677, 458330, ...), etc.;
that is, p(n,p(k,0)) = p(n+k-2,0); there are similar identities for other sequences p(n,h).
Comments