cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329436 Expansion of Sum_{k>=1} (-1 + Product_{j>=2} (1 + x^(k*j))).

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 3, 5, 6, 8, 7, 13, 10, 16, 18, 22, 21, 34, 29, 44, 45, 56, 56, 82, 78, 100, 109, 136, 137, 185, 181, 231, 247, 295, 317, 399, 404, 490, 533, 638, 669, 817, 853, 1020, 1108, 1276, 1371, 1638, 1728, 2017, 2186, 2519, 2702, 3153, 3371, 3885
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 13 2019

Keywords

Comments

Inverse Moebius transform of A025147.
Number of uniform (constant multiplicity) partitions of n not containing 1, ranked by the odd terms of A072774. - Gus Wiseman, Dec 01 2023

Examples

			From _Gus Wiseman_, Dec 01 2023: (Start)
The a(2) = 1 through a(10) = 8 uniform partitions not containing 1:
  (2)  (3)  (4)    (5)    (6)      (7)    (8)        (9)      (10)
            (2,2)  (3,2)  (3,3)    (4,3)  (4,4)      (5,4)    (5,5)
                          (4,2)    (5,2)  (5,3)      (6,3)    (6,4)
                          (2,2,2)         (6,2)      (7,2)    (7,3)
                                          (2,2,2,2)  (3,3,3)  (8,2)
                                                     (4,3,2)  (5,3,2)
                                                              (3,3,2,2)
                                                              (2,2,2,2,2)
(End)
		

Crossrefs

The strict case is A025147.
The version allowing 1 is A047966.
The version requiring 1 is A097986.

Programs

  • Mathematica
    nmax = 56; CoefficientList[Series[Sum[-1 + Product[(1 + x^(k j)), {j, 2, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Length[Select[IntegerPartitions[n], FreeQ[#,1]&&SameQ@@Length/@Split[#]&]], {n,0,30}] (* Gus Wiseman, Dec 01 2023 *)

Formula

G.f.: Sum_{k>=1} A025147(k) * x^k / (1 - x^k).
a(n) = Sum_{d|n} A025147(d).