A329436 Expansion of Sum_{k>=1} (-1 + Product_{j>=2} (1 + x^(k*j))).
0, 1, 1, 2, 2, 4, 3, 5, 6, 8, 7, 13, 10, 16, 18, 22, 21, 34, 29, 44, 45, 56, 56, 82, 78, 100, 109, 136, 137, 185, 181, 231, 247, 295, 317, 399, 404, 490, 533, 638, 669, 817, 853, 1020, 1108, 1276, 1371, 1638, 1728, 2017, 2186, 2519, 2702, 3153, 3371, 3885
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Dec 01 2023: (Start) The a(2) = 1 through a(10) = 8 uniform partitions not containing 1: (2) (3) (4) (5) (6) (7) (8) (9) (10) (2,2) (3,2) (3,3) (4,3) (4,4) (5,4) (5,5) (4,2) (5,2) (5,3) (6,3) (6,4) (2,2,2) (6,2) (7,2) (7,3) (2,2,2,2) (3,3,3) (8,2) (4,3,2) (5,3,2) (3,3,2,2) (2,2,2,2,2) (End)
Crossrefs
Programs
-
Mathematica
nmax = 56; CoefficientList[Series[Sum[-1 + Product[(1 + x^(k j)), {j, 2, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] // Rest Table[Length[Select[IntegerPartitions[n], FreeQ[#,1]&&SameQ@@Length/@Split[#]&]], {n,0,30}] (* Gus Wiseman, Dec 01 2023 *)
Comments