cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A329504 Array read by upward antidiagonals: row n = coordination sequence for cylinder formed by rolling up a strip of width n squares cut from the square grid by cuts at 45 degrees to grid lines.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 4, 5, 2, 1, 4, 8, 4, 2, 1, 4, 8, 8, 4, 2, 1, 4, 8, 12, 6, 4, 2, 1, 4, 8, 12, 11, 6, 4, 2, 1, 4, 8, 12, 16, 8, 6, 4, 2, 1, 4, 8, 12, 16, 14, 8, 6, 4, 2, 1, 4, 8, 12, 16, 20, 10, 8, 6, 4, 2, 1, 4, 8, 12, 16, 20, 17, 10, 8, 6, 4, 2
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2019

Keywords

Comments

By the "width" of the strip is meant the number of squares in a corner-to-corner ring around the cylinder.
For the case when the cuts are parallel to grid lines, see A329501.
See A329508 ... for coordination sequences for cylinders formed by rolling up the hexagonal grid ("carbon nanotubes").

Examples

			Array begins:
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, ...
1, 4, 8, 8, 6, 6, 6, 6, 6, 6, 6, 6, ...
1, 4, 8, 12, 11, 8, 8, 8, 8, 8, 8, 8, ...
1, 4, 8, 12, 16, 14, 10, 10, 10, 10, 10, 10, ...
1, 4, 8, 12, 16, 20, 17, 12, 12, 12, 12, 12, ...
1, 4, 8, 12, 16, 20, 24, 20, 14, 14, 14, 14, ...
1, 4, 8, 12, 16, 20, 24, 28, 23, 16, 16, 16, ...
1, 4, 8, 12, 16, 20, 24, 28, 32, 26, 18, 18, ...
1, 4, 8, 12, 16, 20, 24, 28, 32, 36, 29, 20, ...
...
The initial antidiagonals are:
1,
1,2,
1,4,2,
1,4,5,2,
1,4,8,4,2,
1,4,8,8,4,2,
1,4,8,12,6,4,2,
1,4,8,12,11,6,4,2,
1,4,8,12,16,8,6,4,2,
...
		

Crossrefs

Rows 2,3,4 are A329505, A329506, A329507.

Formula

Let theta = (1+x)/(1-x). The g.f. for the coordination sequence for row n is theta*(1+2x+2x^2+...+2x^(n-1)-(n-1)*x^n).

A329508 Array read by upward antidiagonals: row n = coordination sequence for cylinder formed by rolling up a strip of width n hexagons cut from the hexagonal grid by cuts parallel to grid lines.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 3, 5, 2, 1, 3, 6, 5, 2, 1, 3, 6, 8, 4, 2, 1, 3, 6, 9, 8, 4, 2, 1, 3, 6, 9, 11, 7, 4, 2, 1, 3, 6, 9, 12, 11, 6, 4, 2, 1, 3, 6, 9, 12, 14, 10, 6, 4, 2, 1, 3, 6, 9, 12, 15, 14, 9, 6, 4, 2, 1, 3, 6, 9, 12, 15, 17, 13, 8, 6, 4, 2
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2019

Keywords

Comments

This is the structure of carbon nanotubes.
For the case when the cuts are perpendicular to the grid lines, see A329512 and A329515.
See A329501 and A329504 for coordination sequences for cylinders formed by rolling up the square grid.

Examples

			Array begins:
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 3, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, ...
1, 3, 6, 8, 8, 7, 6, 6, 6, 6, 6, 6, ...
1, 3, 6, 9, 11, 11, 10, 9, 8, 8, 8, 8, ...
1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 10, 10, ...
1, 3, 6, 9, 12, 15, 17, 17, 16, 15, 14, 13, ...
1, 3, 6, 9, 12, 15, 18, 20, 20, 19, 18, 17, ...
1, 3, 6, 9, 12, 15, 18, 21, 23, 23, 22, 21, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 26, 26, 25, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 29, 29, ...
The initial antidiagonals are:
1
1,2
1,3,2
1,3,5,2
1,3,6,5,2
1,3,6,8,4,2
1,3,6,9,8,4,2
1,3,6,9,11,7,4,2
1,3,6,9,12,11,6,4,2
1,3,6,9,12,14,10,6,4,2
...
		

Crossrefs

Rows 1,2,3,4 are A040000, A329509, A329510, A329511.

Programs

  • Magma
    c := 4; \\ set c
    R := RationalFunctionField(Integers());
    FG3 := FreeGroup(3);
    Q3 := quo;
    H := AutomaticGroup(Q3);
    f3 := GrowthFunction(H);
    PSR := PowerSeriesRing(Integers():Precision := 60);
    Coefficients(PSR!f3);
    // 1, 3, 6, 9, 11, 11, 10, 9, 8, 8, 8, 8, 8, 8, 8, ... (row c)
    f3;  // g.f. for row c
    // (x^8 + x^7 + x^6 - 2*x^4 - 3*x^3 - 3*x^2 - 2*x - 1)/(x - 1)
    // = (1+x)*(x^3-x-1)*(x^2+1)^2/(x-1)

Formula

The g.f.s for the rows were found and proved using the "trunks and branches" method (see Goodman-Strauss and Sloane). In the illustrations for n=4 and n=5, the trunks are colored blue, the branches red, and the twigs green.
The g.f. G(c) for row c (c>=1) is
(1/(1-x))*(1 + 2*x + 3*x^2*(1-x^(c-2))/(1-x) + 2*x^c - x^(c+2)*(1-x^(c-1))/(1-x)).
The values of G(1) through G(8) are:
(1+x)/(1-x),
(1+x)*(x^3-x^2-x-1)/(x-1),
(1+x)*(x^2+x+1)*(x^3-x^2-1)/(x-1),
(1+x)*(x^3-x-1)*(x^2+1)^2/(x-1),
(1+x)*(x^4+x^3+x^2+x+1)*(x^5-x^4+x^3-x^2-1)/(x-1),
(1+x)*(x^2+x+1)*(x^2-x+1)*(x^7-x^2-x-1)/(x-1),
(1+x)*(x^6+x^5+x^4+x^3+x^2+x+1)*(x^7-x^6+x^5-x^4+x^3-x^2-1)/(x-1),
(1+x)*(x^7-x^5+x^3-x-1)*(x^4+1)*(x^2+1)^2/(x-1).
Note that row n is equal to 2*n once the 2*n-th term has been reached.
The g.f.s for the rows can also be calculated by regarding the 1-skeleton of the cylinder as the Cayley diagram for an appropriate group H, and computing the growth function for H (see the MAGMA code).

A329515 Array read by upward antidiagonals: row n = coordination sequence for cylinder formed by rolling up a strip of width 2*n+1 hexagons cut from the hexagonal grid by cuts perpendicular to grid lines.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 3, 6, 2, 1, 3, 6, 7, 2, 1, 3, 6, 9, 6, 2, 1, 3, 6, 9, 12, 6, 2, 1, 3, 6, 9, 12, 12, 6, 2, 1, 3, 6, 9, 12, 15, 10, 6, 2, 1, 3, 6, 9, 12, 15, 18, 10, 6, 2, 1, 3, 6, 9, 12, 15, 18, 17, 10, 6, 2, 1, 3, 6, 9, 12, 15, 18, 21, 14, 10, 6, 2
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2019

Keywords

Comments

The width of the strip is a little harder to define here. In the illustration for n=2, the strip is five hexagons wide if measured along hexagons that touch edge-to-edge. A path joining two vertices to be identified when the cylinder is formed has length 4n+2 edges (10 edges in the illustration for n=2).
Because the width 2*n+1 is odd, one edge of the cut has to be displaced sideways (by half the width of a hexagon) in order for the two edges to mesh properly. The arrows in the figures indicate pairs of points which will coalesce.
For the case when the strip is 2*n hexagons wide see A329512.
For the case when the cuts are parallel to the grid lines, see A329508.
See A329501 and A329504 for coordination sequences for cylinders formed by rolling up the square grid.

Examples

			Array begins:
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 3, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
1, 3, 6, 9, 12, 12, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, ...
1, 3, 6, 9, 12, 15, 18, 17, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 22, 18, 18, 18, 18, 18, 18, 18, 18, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 27, 22, 22, 22, 22, 22, 22, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 32, 26, 26, 26, 26, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 37, 30, 30, 30, 30, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 42, 34, 34, 34, 34, 34, 34, 34, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 47, 38, 38, 38, 38, 38, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 52, 42, 42, 42, ...
...
The initial antidiagonals are:
1,
1, 2,
1, 3, 2,
1, 3, 6, 2,
1, 3, 6, 7, 2,
1, 3, 6, 9, 6, 2,
1, 3, 6, 9, 12, 6, 2,
1, 3, 6, 9, 12, 12, 6, 2,
1, 3, 6, 9, 12, 15, 10, 6, 2,
1, 3, 6, 9, 12, 15, 18, 10, 6, 2,
1, 3, 6, 9, 12, 15, 18, 17, 10, 6, 2,
1, 3, 6, 9, 12, 15, 18, 21, 14, 10, 6, 2,
1, 3, 6, 9, 12, 15, 18, 21, 24, 14, 10, 6, 2,
...
		

Crossrefs

Rows 0,1,2,3 are A040000, A329516, A329517, A329771.

Programs

  • Magma
    n := 2; \\ set n
    R := RationalFunctionField(Integers());
    FG3 := FreeGroup(3);
    Q3 := quo;
    H := AutomaticGroup(Q3);
    f3 := GrowthFunction(H);
    PSR := PowerSeriesRing(Integers():Precision := 60);
    Coefficients(PSR!f3);
    // 1, 3, 6, 9, 12, 12, 10, 10, 10, 10, 10, 10, ... (row n)
    f3; // G(n)
    // (2*x^6 - 3*x^4 - 3*x^3 - 3*x^2 - 2*x - 1)/(x - 1)

Formula

The g.f.s for the rows could be found using the "trunks and branches" method (see Goodman-Strauss and Sloane), as was done in A329508. This step has not yet been carried out, so the following g.f. is at present only conjectural.
The g.f. G(n) for row n (n>=0) is (strongly) conjectured to be
(1/(1-x))*(1 + 2*x + 3*x^2*(1-x^(2*n-1))/(1-x) - (n-2)*x^(2*n+1) - n*x^(2*n+2)).
The values of G(0) through G(6) (certified by MAGMA) are:
(1 + x)/(1 - x),
(x^4 - x^3 - 3*x^2 - 2*x - 1)/(x - 1),
(2*x^6 - 3*x^4 - 3*x^3 - 3*x^2 - 2*x - 1)/(x - 1),
(3*x^8 + x^7 - 3*x^6 - 3*x^5 - 3*x^4 - 3*x^3 - 3*x^2 - 2*x - 1)/(x - 1),
(4*x^10 + 2*x^9 - 3*x^8 - 3*x^7 - 3*x^6 - 3*x^5 - 3*x^4 - 3*x^3 - 3*x^2 - 2*x - 1)/(x - 1),
(5*x^12 + 3*x^11 - 3*x^10 - 3*x^9 - 3*x^8 - 3*x^7 - 3*x^6 - 3*x^5 - 3*x^4 - 3*x^3 - 3*x^2 - 2*x - 1)/(x - 1),
(6*x^14 + 4*x^13 - 3*x^12 - 3*x^11 - 3*x^10 - 3*x^9 - 3*x^8 - 3*x^7 - 3*x^6 - 3*x^5 - 3*x^4 - 3*x^3 - 3*x^2 - 2*x - 1)/(x - 1).
Note that row n is equal to 4*n+2 once the (2*n+2)-nd term has been reached.
The g.f.s for the rows can also be obtained by regarding the 1-skeleton of the cylinder as the Cayley diagram for an appropriate group H, and computing the growth function for H (see the MAGMA code).

A329512 Array read by upward antidiagonals: row n = coordination sequence for cylinder formed by rolling up a strip of width 2*n hexagons cut from the hexagonal grid by cuts perpendicular to grid lines.

Original entry on oeis.org

1, 1, 3, 1, 3, 4, 1, 3, 6, 4, 1, 3, 6, 9, 4, 1, 3, 6, 9, 9, 4, 1, 3, 6, 9, 12, 8, 4, 1, 3, 6, 9, 12, 15, 8, 4, 1, 3, 6, 9, 12, 15, 14, 8, 4, 1, 3, 6, 9, 12, 15, 18, 12, 8, 4, 1, 3, 6, 9, 12, 15, 18, 21, 12, 8, 4
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2019

Keywords

Comments

The width of the strip is a little harder to define here. In the illustration for n=2, the strip is four hexagons wide if measured along hexagons that touch edge-to-edge. A path joining two vertices to be identified when the cylinder is formed has length 4n edges (8 edges in the illustration for n=2).
For the case when the strip is 2*n+1 hexagons wide see A329515.
For the case when the cuts are parallel to the grid lines, see A329508.
See A329501 and A329504 for coordination sequences for cylinders formed by rolling up the square grid.

Examples

			Array begins:
1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ...
1, 3, 6, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, ...
1, 3, 6, 9, 12, 15, 14, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, ...
1, 3, 6, 9, 12, 15, 18, 21, 19, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 24, 20, 20, 20, 20, 20, 20, 20, 20, 20, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 29, 24, 24, 24, 24, 24, 24, 24, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 34, 28, 28, 28, 28, 28, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 39, 32, 32, 32, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 44, 36, 36, ...
...
The initial antidiagonals are:
1,
1, 3,
1, 3, 4,
1, 3, 6, 4,
1, 3, 6, 9, 4,
1, 3, 6, 9, 9, 4,
1, 3, 6, 9, 12, 8, 4,
1, 3, 6, 9, 12, 15, 8, 4,
1, 3, 6, 9, 12, 15, 14, 8, 4,
1, 3, 6, 9, 12, 15, 18, 12, 8, 4,
...
		

Crossrefs

Rows 1,2,3 are A113311, A329513, A329514.

Programs

  • Magma
    n := 2; \\ set n
    R := RationalFunctionField(Integers());
    FG3 := FreeGroup(3);
    Q3 := quo;
    H := AutomaticGroup(Q3);
    f3 := GrowthFunction(H);
    PSR := PowerSeriesRing(Integers():Precision := 60);
    Coefficients(PSR!f3);
    // 1, 3, 6, 9, 12, 15, 14, 12, 12, 12, 12, 12, 12, 12, 12, ... (row n)
    f3; // G(n)
    // (x^3-2*x^2-1)*(1+x)^2/(x-1)

Formula

The g.f.s for the rows could be found using the "trunks and branches" method (see Goodman-Strauss and Sloane), as was done in A329508. This step has not yet been carried out, so the following g.f. is at present only conjectural.
The g.f. G(n) for row n (n>=1) is (strongly) conjectured to be
(1/(1-x))*(1 + 2*x + 3*x^2*(1-x^(2*n-2))/(1-x) - (n-2)*x^(2*n) - (n-1)*x^(2*n+1)).
The values of G(1) through G(6) (certified by MAGMA) are:
(1+x)^2/(1-x),
(x^3-2*x^2-1)*(1+x)^2/(x-1),
(2*x^5-3*x^4+x^3-2*x^2-1)*(1+x)^2/(x-1),
(3*x^7-4*x^6+2*x^5-3*x^4+x^3-2*x^2-1)*(1+x)^2/(x-1),
(4*x^9-5*x^8+3*x^7-4*x^6+2*x^5-3*x^4+x^3-2*x^2-1)*(1+x)^2/(x-1),
(5*x^11-6*x^10+4*x^9-5*x^8+3*x^7-4*x^6+2*x^5-3*x^4+x^3-2*x^2-1)*(1+x)^2/(x-1).
Note that row n is equal to 4*n once the (2*n+1)-st term has been reached.
The g.f.s for the rows can also be obtained by regarding the 1-skeleton of the cylinder as the Cayley diagram for an appropriate group H, and computing the growth function for H (see the MAGMA code).

A329502 Expansion of (1+x)*(1+2*x)/(1-x).

Original entry on oeis.org

1, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2019

Keywords

Comments

Decimal expansion of 11/75. - Elmo R. Oliveira, Aug 09 2024

Crossrefs

Row 3 of array in A329501.

Programs

  • Mathematica
    RealDigits[11/75,10,120][[1]] (* or *) PadRight[{1,4},120,{6}] (* Harvey P. Dale, Jul 16 2025 *)
  • PARI
    Vec((1 + x)*(1 + 2*x) / (1 - x) + O(x^80)) \\ Colin Barker, Nov 19 2019

Formula

a(n) = 6 for n >= 2.
E.g.f.: 6*exp(x) - 2*x - 5. - Elmo R. Oliveira, Aug 09 2024

A329503 Expansion of g.f. (1+x)*(1+2*x+2*x^2)/(1-x).

Original entry on oeis.org

1, 4, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2019

Keywords

Crossrefs

Row 5 of array in A329501.

Programs

  • PARI
    Vec((1 + x)*(1 + 2*x + 2*x^2) / (1 - x) + O(x^80)) \\ Colin Barker, Nov 19 2019

Formula

a(n) = 10 for n >= 3.
Showing 1-6 of 6 results.