cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A376161 Number of support Tau-tilting modules for some algebras.

Original entry on oeis.org

3, 5, 12, 33, 98, 306, 990, 3289, 11154, 38454, 134368, 474810, 1693812, 6091780, 22064130, 80410185, 294647250, 1084922190, 4012165080, 14895504030, 55496654460, 207431394300, 777601790940, 2922867908298, 11013796950228, 41596652545756, 157434454904160, 597029454416724, 2268232385053096
Offset: 0

Views

Author

F. Chapoton, Sep 13 2024

Keywords

Comments

See Prop. A.6 in Wang's reference for the table counting Tau-tilting modules for the linear quiver modulo the relation alpha*beta = 0.

Crossrefs

Programs

  • Maple
    a := n -> -(3*n + 2)*(-4)^(n + 1)*binomial(3/2, n + 2):
    seq(a(n), n = 0..28)  # Peter Luschny, Sep 13 2024
  • Mathematica
    A376161[n_] := CatalanNumber[n]*(9*n + 6)/(n + 2);
    Array[A376161, 30, 0] (* Paolo Xausa, Sep 14 2024 *)
  • Sage
    def a(n):
        return 3*(3*n+2)*binomial(2*n+4,n+2)/4/(2*n+1)/(2*n+3)

Formula

a(n) = 3*(3*n+2)*binomial(2*n+4,n+2)/(4*(2*n+1)*(2*n+3)).
a(n) = A329533(n)/(n + 1).
From Peter Luschny, Sep 13 2024: (Start)
a(n) = (3*n + 2) * [x^n] ((1 - 4*x)^(3/2) + 12*x - 2)/(4*x^2).
a(n) = A016789(n)*(3/2)*(2*n)! * [x^(2*n)] hypergeom([], [3], x^2).
a(n) = CatalanNumber(n)*(9*n + 6)/(n + 2).
a(n) = -(3*n + 2)*(-4)^(n + 1)*binomial(3/2, n + 2).
a(n) = 2^n*(9*n + 6)*(2*n - 1)!! / (n + 2)!.
a(n) = A007054(n) * (3*n + 2) / 2.
a(n) = 6*A023999(n + 1)/(n + 2)!. (End)
Showing 1-1 of 1 results.