A329546 Triangle read by rows: T(n,k) is the number of colored digraphs on n nodes with exactly k colors arbitrarily assigned (1 <= k <= n).
1, 3, 4, 16, 72, 64, 218, 2608, 6336, 4096, 9608, 272752, 1336320, 2113536, 1048576, 1540944, 93847104, 812045184, 2337046528, 2689597440, 1073741824, 882033440, 110518842048, 1580861402112, 7344135176192, 14676310097920, 13200581984256, 4398046511104
Offset: 1
Examples
First six rows: 1 3 4 16 72 64 218 2608 6336 4096 9608 272752 1336320 2113536 1048576 1540944 93847104 812045184 2337046528 2689597440 1073741824 n=4, k=2: Partitions: [3,1] and [2,2] with indices 2 and 3 and multiplicities 2 and 1: T(4,2) = Sum_{i=2,3} A072811(4,i)*A328773(4,i) = 2*752 + 1104 = 2608. n=6, k=3: Partitions: [4,1,1], [3,2,1], [2,2,2] with indexes 4, 6, 8 and multiplicities 3, 6, 1: T(6,3) = Sum_{i=4,6,8} A072811(6,i)*A328773(6,i) = 3*45277312 + 6*90196736 + 1*135032832 = 812045184.
Crossrefs
Programs
-
PARI
\\ here C(p) computes A328773 sequence value for given partition. permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)} C(p)={((i, v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v, Vec(q)))); s/p[i]!))(1, [])} \\ here mulp(v) computes the multiplicity of the given partition. (see A072811) mulp(v) = {my(p=(#v)!, k=1); for(i=2, #v, k=if(v[i]==v[i-1], k+1, p/=k!; 1)); p/k!} wC(p)=mulp(p)*C(p) Row(n)={[vecsum(apply(wC, vecsort([Vecrev(p) | p<-partitions(n),#p==m], , 4))) | m<-[1..n]]} { for(n=0, 10, print(Row(n))) }
Comments