A329557 Smallest MM-number of a set of n nonempty sets.
1, 3, 15, 165, 2145, 36465, 1057485, 32782035, 1344063435, 57794727705, 2716352202135, 160264779925965, 10737740255039655, 783855038617894815, 61924548050813690385, 5139737488217536301955, 519113486309971166497455, 56583370007786857148222595, 6393920810879914857749153235
Offset: 0
Keywords
Examples
The sequence of terms together with their corresponding systems begins: 1: {} 3: {{1}} 15: {{1},{2}} 165: {{1},{2},{3}} 2145: {{1},{2},{3},{1,2}} 36465: {{1},{2},{3},{1,2},{4}} 1057485: {{1},{2},{3},{1,2},{4},{1,3}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; dae=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&FreeQ[primeMS[#],1]&]; Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
-
PARI
a(n) = my(k=1); prod(i=1, n, until(issquarefree(k), k++); prime(k)); \\ Jinyuan Wang, Feb 23 2025
Formula
a(n) = A329558(n + 1)/2.
Extensions
More terms from Jinyuan Wang, Feb 23 2025
Comments