cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329559 MM-numbers of multiset clutters (connected weak antichains of multisets).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 203, 211, 223, 227
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2019

Keywords

Comments

A weak antichain of multisets is a multiset of multisets, none of which is a proper subset of any other.

Examples

			The sequence of terms tother with their corresponding clutters begins:
   1: {}              37: {{1,1,2}}            91: {{1,1},{1,2}}
   2: {{}}            41: {{6}}                97: {{3,3}}
   3: {{1}}           43: {{1,4}}             101: {{1,6}}
   5: {{2}}           47: {{2,3}}             103: {{2,2,2}}
   7: {{1,1}}         49: {{1,1},{1,1}}       107: {{1,1,4}}
   9: {{1},{1}}       53: {{1,1,1,1}}         109: {{10}}
  11: {{3}}           59: {{7}}               113: {{1,2,3}}
  13: {{1,2}}         61: {{1,2,2}}           121: {{3},{3}}
  17: {{4}}           67: {{8}}               125: {{2},{2},{2}}
  19: {{1,1,1}}       71: {{1,1,3}}           127: {{11}}
  23: {{2,2}}         73: {{2,4}}             131: {{1,1,1,1,1}}
  25: {{2},{2}}       79: {{1,5}}             137: {{2,5}}
  27: {{1},{1},{1}}   81: {{1},{1},{1},{1}}   139: {{1,7}}
  29: {{1,3}}         83: {{9}}               149: {{3,4}}
  31: {{5}}           89: {{1,1,1,2}}         151: {{1,1,2,2}}
		

Crossrefs

Connected numbers are A305078.
Stable numbers are A316476.
Clutters (of sets) are A048143.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[100],And[stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]<=1]&]

Formula

Equals {1} followed by the intersection of A305078 and A316476.