A329559 MM-numbers of multiset clutters (connected weak antichains of multisets).
1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 203, 211, 223, 227
Offset: 1
Keywords
Examples
The sequence of terms tother with their corresponding clutters begins: 1: {} 37: {{1,1,2}} 91: {{1,1},{1,2}} 2: {{}} 41: {{6}} 97: {{3,3}} 3: {{1}} 43: {{1,4}} 101: {{1,6}} 5: {{2}} 47: {{2,3}} 103: {{2,2,2}} 7: {{1,1}} 49: {{1,1},{1,1}} 107: {{1,1,4}} 9: {{1},{1}} 53: {{1,1,1,1}} 109: {{10}} 11: {{3}} 59: {{7}} 113: {{1,2,3}} 13: {{1,2}} 61: {{1,2,2}} 121: {{3},{3}} 17: {{4}} 67: {{8}} 125: {{2},{2},{2}} 19: {{1,1,1}} 71: {{1,1,3}} 127: {{11}} 23: {{2,2}} 73: {{2,4}} 131: {{1,1,1,1,1}} 25: {{2},{2}} 79: {{1,5}} 137: {{2,5}} 27: {{1},{1},{1}} 81: {{1},{1},{1},{1}} 139: {{1,7}} 29: {{1,3}} 83: {{9}} 149: {{3,4}} 31: {{5}} 89: {{1,1,1,2}} 151: {{1,1,2,2}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Select[Range[100],And[stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]<=1]&]
Comments