cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329583 Numerators of 1 + n^2/4 + period 3: repeat [-1, 1, 1].

Original entry on oeis.org

0, 6, 3, 12, 6, 30, 9, 54, 18, 84, 27, 126, 36, 174, 51, 228, 66, 294, 81, 366, 102, 444, 123, 534, 144, 630, 171, 732, 198, 846, 225, 966, 258, 1092, 291, 1230, 324, 1374, 363, 1524, 402, 1686, 441, 1854, 486, 2028, 531, 2214, 576, 2406, 627
Offset: 0

Views

Author

Paul Curtz, Nov 17 2019

Keywords

Comments

First bisection is 3*A008810.

Crossrefs

Programs

  • Mathematica
    MapIndexed[#1 - 2 Boole[Mod[First@ #2, 3] == 1] + 1 &, CoefficientList[Series[(1 + 5 x - x^2 - 2 x^3 + 2 x^4 + 5 x^5)/(1 - x^2)^3, {x, 0, 44}], x]] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    concat(0, Vec(3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Nov 24 2019

Formula

a(n) = A261327(n) + A131561(n+2) = (n^2 + 4)*(5 - 3*(-1)^n)/8 + (-1)^((n+1) mod 3).
From Colin Barker, Nov 24 2019: (Start)
G.f.: 3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)).
a(n) = -a(n-1) + 2*a(n-2) + 3*a(n-3) - 3*a(n-5) - 2*a(n-6) + a(n-7) + a(n-8) for n>8. (End)

Extensions

Incorrect 129 replaced with 123 by Colin Barker, Nov 24 2019